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Abstract

This post discusses active learning and reasoning, and the strengths
and limitations of using transformers for it. After setting up the prob-
lem context, we conclude that for transformers to serve as world-
models to these purposes, they will need to adopt a different form
that permits multiple optimization steps, and may need changes to
improve data efficiency. This is a work-in-progress - we welcome feed-
back and collaboration!

1 Background

An intriguing problem in machine learning is how to get agents to bootstrap
via active learning. If an agent is able to do this, then it can go from
0 = 1 (no structure to structured); by induction it can then go from 1 =
N, where N is something that humans haven’t done. Human progress is
furthered when our tools unlock new capabilities, and so an agent capable
of bootstrapping is a worthy goal.

1.1 World model

When an agent (animal, human, AI) interacts with the environment, it can
gain valuable knowledge:

e What is possible and likely: p(o;) where o are observations, ¢ indexes
time.!

e What actions do: p(o¢11]a,0¢), where a is an action.
e Valence as to actions and observations: p(r|a, o) where r is reward.?

Because interactions are expensive — they consume time and energy — a
goal of an agent is make the best use of acquired knowledge when choosing
new actions. Typically this is done by building a model of the world, where
you approximate p(0;+1]a, 0;) (Markov state transition function) or p(r|a, o)
(Q-learning) (or some other factorization) with a function approximator, like
a neural network. MuZero[1] and EfficientZero[2] are examples of model-
based RL; they employ a separate planning module which uses the world
model to simulate actions into the future; these actions are selected based
on the upper confidence bound (UCB) or upper confidence tree (UCT) to
both explore and improve the action selection policy.?

When used as part of a planner, the goal of the world & reward model
is to extrapolate what will happen based on past experience — predict
p(0t+1,7¢+1) using a¢,0¢. This is very unconstrained - what should the
model be?

A common first assumption is consistency — each action produces an
expected effect, which is represented by the distribution p(o;11]a, 0;). This
assumption is not commonly valid in the real world, though: there is un-
observed state z, which affects the transition distribution: p(oty1la, oy, 2t).
The world is often consistent if you take into account unobserved variables.*

A second assumption, often less explicit, is to assume parsimony: the
model should be as simple as possible while explaining the past action &
outcomes [4]. Simplicity is hard to quantify, so empirically it is taken to
mean that:

1 Spatial indexing is omitted in this
post.

2 This is of course reinforcement learn-
ing (RL), where there is an (approxi-
mate) ordering over actions and obser-
vations. In RL the agent tries to op-
timize the (typically time-discounted)
reward.

3 UCB / UCT / PUCT are princi-
pled ways of balancing exploration vs
exploitation. See Multi-armed bandits
with episode context [3].

41t you don’t assume consistency, then
there is no sense in making a model!



1. Models are structured hierarchically: sub-modules produce intermedi-
ate results, with each submodule contributing small amounts of ‘pro-
cessing gain’.

2. Models have limited dependency graphs: conditional actions depend
on a minimum of other variables.

3. Models have limited free & non-zero parameters. (This in turn is a
different way of saying 2.; you can represent dependency graphs via
indicator variables. )

4. Models are selected from a space where working solutions are unusu-
ally common. °

Models in turn can be projected onto the abstract memorization <+ com-
pression axis, where memorization corresponds to little or no computation,
and compressed models leverage computation to generate & describe data.
Simple models use computation, and so can be considered programs; gen-
erating them requires a degree of compression, which is itself intimately
related to understanding [5].

Computation is also deeply linked to generalization — if you can run
an algorithm to generate existing data, then you can also run it to generate
new data (hence the name). Generalization is of obvious importance when
exploring an environment.

Deriving models to fit data accurately & parsimoniously ( & compression)
is hard! Partly this is because of what Stephen Wolfram dubs the general
non-invertability of computation: the most efficient (and often only) way to
know what a computation does is to run it. This would imply that looking
for models to describe data reduces to search, or at worse to enumeration.

Fortunately, there are working proofs that model search can be efficient:
human engineering, biological evolution, neural networks, and the human
brain itself. This appears to be the dual of the parsimony criteria: IF mod-
els are structured hierarchically, with limited dependency graphs, limited
free parameters, and from a ’productive’ space, THEN the search space of
possible models is also reduced dramatically — something like O(nlog(n))
or O(log(nlog(n)))... where each of the log terms comes from the limits
above.. More succinctly: parsimonious models are easier to search for.

“Perfection is achieved, not when there is nothing more to add,
but when there is nothing left to take away.” — Antoine de
Saint-Exupéry, Airman’s Odyssey

1.2 Deep learning

Deep learning is a type of model building described above, where instead of
action-observation pairs, models serve as function or conditional probability
approximators: p(y|z). Deep learning takes a unique approach to finding
models: by relaxing 3. (limited free parameters), deep learning enables
stochastic gradient descent (SGD), a rather simple form of search / opti-
mization to readily discover solutions. Overparameterization allows models
to work in high-dimensional spaces, which means that (usually) there are
no local minima, only saddles, so that all solutions are navigable: you can
move from one solution to another with a series of small steps [6]. In deep
learning, model weights are typically randomly initialized, and training en-
tails a selection of existing primitives and optimization over them, ala the
Lottery ticket hypothesis [7].

By relaxing 3., work in deep learning focuses much on 4. — architectures
(’solution spaces’) that empirically create good models, usually by fixing or
constraining the dependency graphs 2. The two stand-out examples here
are convolutional networks (ConvNets) and Transformers.

Convnets work by ‘baking in’ translational (or other) invariance: the
presence of a feature is independent of its location. This is another way of
dramatically reducing 2. - instead of an all-to-all matrix multiply, convolu-
tion strongly structures computation and dependency; this has the added

5 Biology leans quite heavily into this
— because it is a “blind watchmaker”,
it faces no reason to differentiate be-
tween searching a space and searching
for a search space. Proteins are the
canonical example here: it took bil-
lions of years and oceans of 1um or-
ganisms to arrive at the central dogma
of biology (DNA — mRNA — pro-
tein), where the probability of any ran-
dom protein doing something useful is
trillions of times more likely than ex-
pected. This is something like meta-
structure: the space of structured mod-
els is itself structured.

6 Because of the reduced dependency
graph, it is also possible to do much
more local & parallel optimization, a
fact that is heavily leveraged in human
engineering. (Cutting that dependency
graph is, of course, a persistent man-
agerial challenge). Evolution quanti-
fies this more strongly: even with mas-
sively parallel search, you absolutely
need hierarchically structured systems
to make any headway at all!



benefit of reducing the number of parameters 3. By layering convolutional
layers with reductions you can compose hierarchical models, satisfying 1.

Transformers have a different ’inductive bias’: they implicitly assume
that models (hence computation in the real world) is made up of a series
of conditional ‘computational primitives’, where each computational primi-
tive is a composition of vector rotations, scales, and squashing nonlinearity
operating in parallel over sets of items called ‘tokens’. The conditions for
executing these primitives are gating or ‘attentional’ variables, which are
created by pattern matching between tokens.

Transformers assume that these gated computational primitives are na-
tively applied across all positions uniformly — if there is a primitive that
say changes the tense of a verb, then by default it changes the tense of all
verbs in the input, simultaneously & in parallel. In Transformer parlance:
every head is applied equivalently at all positions in a sequence. This is
most obvious in an encoder-decoder architecture like BERT [8], but also
true in decoder-only models. They thereby assume order invariance, much
the same as ConvNets assume translation invariance; adding position encod-
ings allows invariances / equivariances to be learned. Finally, like ConvNets,
Transformers are stacked and are hierarchical.

All deep nets assume data is ergodic, or comes from a fixed distribu-
tion, equivalent to the consistency assumption — so training involves mul-
tiple passes over the data, accumulating errors in the parameters using an
exponential moving average. As mentioned above, the parameter space is
rendered navigable: if you can move between any model by gradual changes,
then the parameters are the only memory you need.

2 Active learning

Active or bootstrapped learning refers to the case that all information re-
lated to action selection is derived from interactions with the environment.
This is contrary to typical deep learning, where very large datasets are used
for training or pre-training, but is common in the RL field, e.g. EfficientZero
as mentioned above.”

Pre-trained transformers, like GPT-4, are remarkable in that, purely
through the process of learning to predict the next word, they learn a com-
positional and often quite accurate & nuanced model of the world. This sug-
gests that the combination of architecture, training algorithm, and highly
structured input data ® can induce a strong world model. Also remark-
able that this model can be self-structuring: when applied to itself auto-
regressively, it seems to evince ’thinking’ that at least follows the well-worn
channels of human thought.

Based on this tremendous emergent representational power, it seems
natural to apply transformers to bootstrapped learning problems. Dream-
Coder [10] was the core inspiration for this; the thought as of ~ 2 years ago
was that, given the power of transformers, it made good sense to use them
to store heuristic knowledge instead of the Prototypcial networks [11] that
DreamCoder uses. Indeed, like ProtoNets, transformers are well known to
show transductive or few-shot learning [12].

2.1 Reasoning, planning, and search

As described above, a goal of an agent is to best use past experience when
selecting future actions; compressing experience into a parsimonious world
model is a good way of doing this, as it permits generalization via compu-
tation. Generalization entails predictions of what actions will do without
having to incur the costs of executing them. When coupled to search, this
permits planning, exactly as used in model-based RL agents like MuZero.
Furthermore, good world models allow both ends-means and means-
ends analysis (deduction and induction), wherein end states can be used to
optimize actions, actions can be used to optimize end states, and even start
states or intermediate states / representations can be optimized; see Figure

7 In practice, of course, it makes full
sense to take advantage of human data;
for the purposes of going from 0 = 1,
this is left for future work.

8 The more structured, the better:
Textbooks are all you need [9]
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Figure 1: Simplified schematic of model-based agent. Black lines indicate
usual causal flow: given input state and an action, an output state is gener-
ated. Blue lines indicate alternative flow: given a desired output state and
an input state, produce / 'reason’ to an action (goal-directed policy); or,
just given an input state, produce an action (RL policy); or, given output
state and action, estimate input state (inverse model).

1°. In a limited sense, this method of passing information via learned models
of the world is reasoning. Humans use fuzzy forward- and inverse- models
similarly in the process of behavior generation, perception, and problem
solving.

Planning equates to selecting an action: o' = argmax, p(ri+1|a, o)
under reward expectation, or o’ = argmax, f(p(ot+1]a, 0t), g:) where g; is
a goal, and f() measures distance to the goal'?. If the environment has un-
observed state, action selection requires two optimization steps: perception
z' = argmax,, p(ot|z:) and action o’ = argmax, p(ri+1la, 0, z’). Planning
may also be ends-means based: 0;_; = argmax,, _, p(o¢, 7|at—1,0t—1) - that
is, goal states are selected based on reward, and previous states are selected
based on accessibility. As the world is hierarchically structured, action can
be hierarchically structured as well: g = max,, 11 p(0t11,7t+1]a”, 0r)

Human reasoning and planning seems to be a fluid optimization over all
free variables - actions, intermediate states, latent variables'!, with possi-
ble backtracking, branch-and-bound, or constraint generation to guide that
search. The key feature is search - the selection of one from a set of many.
Search imbues structure to the sequence of actions; this structure can sub-
sequently be amortized into both a policy and a refined world model, which
in turn facilitates better action selection, and therefore is required for boot-
strapping and active learning.

More succinctly: you need to do search (or optimization) to bootstrap:
go from no structure to some structure.

2.2 Can transformers reason?

Transformers are a feedforward architecture: they do function approxima-
tion, y = f(x) or p(y) < p(y|z); in a decoder-only transformer, y is the
next token and x is the context, a list of previous tokens. See Figure 2 for
a brief review of one layer / head in a transformer, which is usually tiled
tiled horizontally (several heads) and vertically (many layers).

When trained on internet-scale data, Transformers have an unusual
emergent property that they seem to form approximate computational mod-
els of the world [13] by composing layers of multiple ”induction heads” [14],
and can e.g. infer structural priors from spatial data [15, 16]. This compo-
sitional, computational modeling of the data, in addition to practical means
of training on trillions of tokens [17], leads to foundation models like Chat-
GPT that are able to learn ”in-context” — that is, respond not only based
on their tremendous stored knowledge, but also structure inherent in their
immediate input stream or context [12, 18, 19].

This seems like a perfect match for bootstrapped active learning! Com-
putational, compositional models of the world should generalize well, and
in-context learning (or transductive learning) means they can be sample
efficient, e.g. efficiently use observations.

Yet there are limitations. As transformers are feedforward, the atten-

9 If you know the full p(0t41,7, a,0¢)
you can condition on any one of those
variables. For example, UDRL condi-
tions on r, MCTS planning on a, Q-
learning on a,r. But usually you don’t
or can’t estimate this full probability.

10 The goal itself can be optimized
over, and the distance or matching
function f() to the goal can be learned.

I Tnference of latent variables is im-
plict in the case of perception; explicit
in the case of e.g. debugging.
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Figure 2: Simplified diagram of a common garden-variety fineh transformer.
Token stream enters to the left and consists of a set of vectors. These
vectors are each passed through the Query, Key, and Value matrices to
produce Q, K, and V. The per-token dot-product (or other distance metric)
between all Q and K elements is taken to compute the attention matrix.
This attention matrix is passed through a softmax along one dimension and
then multiplicatively gates the values. The gated values are summed along
one token dim, then passed to two multi-layer perceptrons which expand
and then compress the per-token vectoral space. This results in a new
token stream. Green boxes are slowly-varying variables, blue and purple
boxes are per-trial variables. Layer normalization and residual connections
are omitted.

tional matrix g is wholly dependent on structure in the input stream, and
learning 6 to drive attention is wholly dependent on conditional structure
in the output stream, p(y|x).

In form of outlined above, reasoning involves propagating information
through a world model for argmax optimization. This is impossible in the
feedforward one-argument functional form of a transformer. 2 Policy mod-
els are the same functional form, a = 7(6,0), hence transformers do learn
action-selection policy based on human behavior. In more technical terms:

“Transformers solve compositional tasks by reducing multi-step
compositional reasoning into linearized subgraph matching, with-
out necessarily developing systematic problem solving skills.”
21]

However, it is easy to imagine a form that does support reasoning: with
decoder-encoder architecture like BERT, you can treat output tokens as
0¢+1,7t+1 and the input tokens as ay, o4, z¢, and perform optimization over
at, z¢. Per the bootstrapping discussion below, this would require a pre-
trained transformer.!'3

CoNcLUSION: Transformers don’t innately reason, but they could with
modifications.

2.3 Can transformers bootstrap?

If a transformer is used as a policy model a = 7(6, 0), then to learn the model
parameters 6 both a and o must be structured; yet to structure the search
with reasoning or planning, 6 itself needs to be structured! This results
in a Catch-22: transformers cannot be used for bootstrapped learning and
reasoning.

This can be (partly) remedied by using a more complete world model, ala
EfficientZero [2] and the BERT example above, where the model approxi-
mates p(0¢11,7t+1|0, a,0¢). Then, even under unstructured action selection,
0 may be optimized just from the observations — though it still cannot
generate a policy, since there is no structure in the conditional probability
p(aloy).

Again, a way to go from no structure to some structure is with search or

12 Gee also: Large Language Mod-
els Still Can’t Plan (A Benchmark
for LLMs on Planning and Reasoning
about Change) [20].

13 Tt may not be efficient, though: in
the limit, softmax outputs a categori-
cal variable () which gates per head
computation (vector rotation - transla-
tion - scaling - squashing). This form
of conditional execution is omnipresent
in the world, but hard to invert. LLMs
of course can and are trained, but they
have the advantage that their input
has sufficient structure (the incremen-
tal, documented nature of human writ-
ten thought) for generating gating con-
ditions.

optimization: o’ = argmax, p(r:+1]a, 0¢). As there is structure in p(0¢41, re41|a, or)

from the forward transition function of the world, reasoning is possible;



subsequent training of the full model p(0¢41,7r¢+1,a’, 0¢) can induce a policy
p(aloy) as well.
Including unobserved variables, you then need three optimization loops:

2" = arg max p(o4|2, 0)
Zt

& = argmax p(resla, 0, 2,0
¢ = arg méixp(otﬂ, rir1,a’, 2 04]0)

Corresponding to perception, reasoning, and model optimization, respec-
tively (and one more in the case of goals!). This makes the algorithm take
the form of Expectation Maximization (EM) or coordinate descent. Alter-
nately, it can be considered a factorization along known divisions: world
latents z are independent a, and assumed fast-varying (time factorization)
to 0; a is quickly varying compared to #.'* Coordinate descent is a common
motif used with dependency factorization, per 2. above. Library learning
[22, 10, 23, 24] is an important additional optimization loop & factorization
not covered here.

To perform these optimizations, a natural choice is the chain rule of
calculus, or backprop. You can invert a forward model by deriving gradients
and applying e.g. Newton’s method; indeed, SGD does a form of reasoning
when repeatedly answering the question: “To improve model performance,
which way should I move this weight?” 15

That said, SGD has known limits [29], and Survey/Belief Propagation
[30] does not readily extend to SAT problems [31] — the first two optimiza-
tions are open problems.

CoNcLUSION: Transformers can’t innately bootstrap, but they could
with modifications.

2.4 Efficiency

Efficient use of observations is critical for exploring unrestricted spaces;
for this reason DreamCoder uses transductive ProtoNets to represent the
action-selection policy. Transformers evince the same few-shot learning,
but only after training; this training assumes ergodic data, an assumption
violated when bootstrapping. Furthermore they typically need at least an
order of magnitude more training tokens than parameters to get to the point
of few-shot learning.

It is therefore likely, and empirically seems to be the case, that there
should be a process of allocation and regularization as a world-model grows
in complexity, beyond what is afforded by the ResNet backbone'®. This has
been demonstrated [32], but is not common. Allocation is complementary to
the Lottery Ticket hypothesis: instead of eliminating or navigating around
randomly-initialized bad hypotheses 17, you directly create them.

If reasoning and program synthesis are cast as SAT or SMT problems,
then there is clear evidence that NN approaches with SGD are orders of
magnitude less efficient than purpose-built solvers like Z3 or Sketch [33].
Sketch uses counterexample guided inductive search - CEGIS - where coun-
terexamples are used to iteratively constrain the solution space [34]. It finds
solutions rapidly on problems that SGD struggles with, even with advanced
heuristics (restarts, annealing, gradient noise, etc) [29]. This type of local,
space-partitioning search is inherently more efficient than global, ergodic
optimization when gradients are ill-behaved and should be considered for
reasoning agents - e.g. for solving the arg max optimizations above.'®

SUPPOSITION: Getting transformers to work well as active learners re-
quires something more than SGD.

3 Summary

This post delves lightly into active, model-based, bootstrapped learning. It
outlines a mechanistic interpretation of reasoning as a form of information

4 LLMs do not distinguish between
a and 6. Meanwhile, the evolution
of cognition seems to entail innovation
through factorization: different brain
regions handle different (abstract) as-
pects of the world.

15 Other approaches like direct feed-
back alignment [25], or GFlowNets
[26] treat learning the inverse as an
independent task. In the case of
GFlowNets, this seems to provide a
good inductive bias for the learn-
ing algorithm, speculatively because
both forward and reverse model capure
modes [27] in the same order, e.g. there
is less variance compared to the analyt-
ical gradient, ala PPO [28].

16 ProtoNets directly support alloca-
tion: they store examples.

17 Or alternately: culling the depen-
dency graph between variables (both
observed and internal), which takes a
lot of data.

18 Also of consideration are orthog-
onal or second-order approaches —
learned policy models that operate
over the dependency space. This
is partway to providing a ’type sys-
tem’ to a transformer, or augmenting
the form of transformer heads to be
p(y|(xa, zb), (Ua, us)) where a and b are
type and value. This can be repre-
sented by normal transformer heads (if
type can be inferred from context) but
adding a structural bias could help, like
type systems help when programming.



propagation and optimization in a learned model, and from this determined
that native transformers can neither reason nor bootstrap. However, appro-
priate functional and algorithmic modifications should make both of these
possible. Work to prove that this is the case is ongoing.
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