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Abstract

This post goes into more detail on what is meant by active learning
and how it relates to program induction. We discuss the use of a
simulator for running a program (∼ compressed model), and the use
of a world model to encapsulate and operationalize accrued experience
for efficient inference of programs. Desirable features of this world
model are described, particularly features that enable mechanistic
planning and reasoning, but the exact form is left as an open problem.

1 Introduction

A general motif in machine learning is (famously) function approximation,
y = f(x), where f is parameterized by θ,

y = fθ(x)

The form of fθ() depends on the application & the data x, y. Two prominent
examples are LLMs, where y is the next token, and x is a list of contextual
tokens, and diffusion/flow models, where x is the current image (+ tokens),
and y is an estimate of either the noise in that image, or the deltas to
change/improve the image.

Deep learning overparameterizes f with very many θ’s, which naturally
means that the number of datapoints required to set or eliminate those
weights is also large.1 This works very well in domains where data is inter- 1 Overparameterization also increases

the absolute number of acceptable so-
lutions, and sometimes the fraction of
acceptable solutions to these function
approximation problems.

net scale (including the two examples above). Internet scale data in turn
requires internet scale compute to measure and change all those weights
based on the data and the model, which limits accessibility to smaller com-
panies and groups.

For some tasks like in-the-wild perception, it seems that there is no way
around large data and compute; as Yann LeCunn points out, humans obtain
∼50x the data used to train an LLM through their optic nerves in four years
of childhood2. 2 The human brain is obviously much

more energy-efficient. This efficiency
is primarily a difference in communi-
cation energy, as the per-float8 of a
H100 and per-synapse energy are ap-
proximately the same, ∼1e6 times that
of the Landauer limit.

We do know one mechanism that is highly data efficient: science, which
takes minimal samples to yield models that closely and parsimoniously
match the causal structure of the real world. Children, too, are amateur sci-
entists in their own way, which arguably leads to sample efficiency. As men-
tioned in the previous post, Are Transformers all you need?, active learning
is dependent on sample efficiency for learning and exploration: progress is
governed by how much data is required to learn a new skill.

Scientific models usually can be described mathematically – or equiv-
alently as programs which define and describe how elements in the model
interact, how latent or unobserved quantities are set, and how the observed
variables are generated. These programs are considered to mimic the causal,
computational nature of the world, and often are as simple as possible.

Yet because these models are causal and computational, they are hard
to fit; in comparison to the overparameterized functions fθ(), there is only
one correct minimal solution, and a program either works or it doesn’t.
In comparison, the task of generating realistic image or video sequences
tends to be tolerant of slight inaccuracies, such as an unrealistic smile in a
generated image.
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Common approaches to this minimal version of modelling (also known
as symbolic regression) frequently involves MCMC or sampling based algo-
rithms [1] which work in spaces where the input-output mapping for from
model → data is highly nonlinear and discontinuous3. 3 Again, compare this with overparam-

eterized deep models, where all points
are approximately saddles and so the
space is navigable.

Note that overparameterized models (e.g. large language models) do
work well with discrete sequences, which are discontinuous and nonlinear,
but LLMs are in nature autoregressive (predicting the next token based on
other tokens) and so may not be able to model the causal dynamics of the
world, as scientific models & programs require.

Humans work fine in these spaces, though. We understand causal and
discontinuous relations in a sample-efficient manner. Can we replicate their
behavior algorithmically?

2 Learning with a simulator

Assume that we have a dataset (x̂, ŷ) that is much too small for traditional
function-approximation y = fθ(x). Instead, assume we additionally have a
simulator g which runs a program ϕ that transforms x into y:4 4 Because ϕ is a program - hence repre-

sented as a graph and not set of param-
eters - we adopt this notation instead
of gϕ() .

y = g(ϕ, x)

As this simulator can be human-designed (e.g. python), the program ϕ
can be human-interpretable, and (ideally) also concise.5 We can sample 5 The simulator additionally emits in-

termediate ‘disambiguating’ states z:
y, z = g(ϕ, x), which will be discussed
later.

as many times as we want from g(ϕ, x), which eliminates some sample-
efficiency limitations – yet we still operate in a limited data regime in the
sense that we don’t have assume access to many examples of good programs
ϕ that transform x, y – we have to learn to generate good code ϕ ourselves.
6 6 Although we assume access to a for-

ward simulator, we are also interested
in sample efficient methods that require
less real environment data. In many
settings, gathering real world data is
expensive!

The task of learning is to infer an optimal ϕ∗ :

ϕ∗ = argmin
ϕ

Lrec(ŷ − g(ϕ, x̂)) + Lcode(ϕ)

Where Lrec is a reconstruction loss and Lcode measures program ϕ quality
(e.g. length, syntactic, and type correctness).

One approach to this problem is to generate a dataset Φ by sampling n
(xi, yi, ϕi) tuples through random enumeration of ϕ, x and transformation
via the simulator y = g(ϕ, x)

Φ =

n⋃
i=1

(xi, yi, ϕi)

Then train a function hθ to predict the program given (x, y). The parame-
ters θ are optimized to minimize the loss over Φ:7 7 If the loss is taken over the whole

dataset, as indicated here, then this is
gradient descent, not SGD!

n∑
i=1

L(ϕi, hθ(xi, yi))

Then h can be used to approximate the optimal ϕ∗:

ϕ∗ ≈ ϕ̃ = hθ(x, y)

Thus h is a policy for generating the program, and it requires that the
initialization of Φ includes the the true data (x̂, ŷ) in its domain and range.
This is true in LLMs, which are trained on human-devised solutions to
problems, and usually queried with problems within their domains. The
approach has also proven successful in modelling numerical sequences[2].

Yet: knowing a good initialization is tantamount to being able to solve
the problem! If you can reasonably enumerate ϕi and evaluate whether

ŷ
?
= g(ϕi, x̂), then you can simply search for ϕ∗. In the spaces we’re inter-

ested in, ϕ∗ is factorizable but infinite-dimensioned, and cannot be readily
enumerated – there are just too many programs.8 8 Local enumeration is and must be

possible, as mentioned below in the re-
inforcement learning section.
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In this document we define active learning as the exploratory process
that recovers ϕ̃ when the only knowledge is supplied by the specification
(x̂, ŷ) and the function g(ϕ, x). 9 We assume you don’t know a good ini- 9 Note the loss terms are optional.
tialization to Φ - active learning should work when Φ is unstructured, e.g.
the result of random enumeration.10 10 This form of ‘active learning’ is thus

a subset of ‘active inference’ as pro-
posed in [3].2.1 Incremental & recursive generation

– Before approaching the modeling and action-generation problem, an interlude

on factoring the problem –

Learning to produce a complete ϕ̃ length j is very hard: the probability
of getting all j choices correct becomes vanishingly small as j becomes large;
even one small mistake can ruin a program. Humans almost never do this;
we construct programs (and writ large, software) incrementally, by editing
an existing program & observing intermediate output. 11 11 This metaphorically is similar to

how a diffusion model creates an im-
age: images are generated recursively
(by applying an incremental transition
to the previous output); code can be
written by adding a smaller piece to
the previous work-in-progress. They
are different in that in image generation
the transition we learn has a parame-
terized structure in a continuous space,
whereas incremental pieces of code are
discrete and don’t readily come from
typical structured distributions.

ϕ̃j+1 = hθ(x, y, ϕ̃j)

Alternately, h can explicitly create edits:

∆ϕ̃ = hθ(x, y, ϕ) (1)

ϕ̃ =

j∑
0

∆ϕ̃ (2)

(This is very loose nomenclature – ∆ϕ̃ is discrete, and you can’t really sum
over it, only recursively apply the edits.) Edits are sampled from Φ, which
is good as it approximately squares the size of the dataset.

Incremental learning and editing makes intuitive & natural sense. Ex-
perimentally, a transformer does approximate hθ in eq.1 with high fidelity
– but it does not generalize well. As mentioned in the previous post, this
transformer is evincing a policy over programs ϕ or program edits ∆ϕ,
and solutions to the original problem defined by (x̂, ŷ) are by definition
out of distribution and do not match the real data distribution of ”good
code/programs” that we care to replicate.

A second approach to factoring ϕ̃ is to make the process recursive –
some actions generate intermediate states, which serve as sub-goals that
can generate their own actions.12 12 Most real-world action generation

can be expressed in tree form, however
our knowledge of this literature is lack-
ing.

2.2 Reinforcement learning

One way of formalizing the problem of creating edits to a program is to
treat it as a reinforcement learning problem. The RL objective is to select
edits that maximize reward:

∆ϕ∗ = argmax
at

∑
at

rt (3)

The action is the program edit at = ∆ϕt and our reward rt is sparse reward,
i.e the negative of the total loss function L = Lrec+Lcode. Selecting actions
or edits is thereby done via search, which creates a supervised dataset to
train hθ. Search can be tree-search to select multiple actions in a sequence,
which is how AlphaZero works – the upper-confidence bound (UCB, or in
this case, UCT) on the Monte-Carlo tree search (MCTS) over actions is
used as a supervised target for a policy network (that, in turn, hopefully
generalizes beyond the MCTS policy).13 13 This seems like a safe bet with recent

architectures.You certainly can search over possible actions or edits, but this operation
is:

1. Linear in the program length – locations to edit = l,

2. Linear in the number of options – atoms + extant variables + new
variables = o,

3. Geometric in the edit depth = d
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Resulting in at least O((lo)d)
That’s not how humans program! We don’t start with a random policy

of editing code, and update the likelihood of selecting an action based on
whether it worked or not. As mentioned above, the probability of obtain-
ing a working program in that way is astronomically small. Moreover, we
assume here that we don’t have access to any structured data or sample tra-
jectories: all information must come from interaction. Instead we plan and
reason with a world model that encapsulates the dynamics & structure
of the world.14 14 MuZero & EfficientZero make good

use of world models, but they rely on
MCTS to propagate the utility of fu-
ture states back to present action se-
lection; they do not plan or reason per
se. Their action spaces are also smaller.

Planning can avoid some of the curse-of-dimensionality problems that
plague pure RL approaches to open-ended domains like programming. In-
stead, human programmers iteratively select intermediate and end-states
based on features of the data x̂, ŷ, features of the current program ϕ̃ and its
intermediate data z, and accrued knowledge of past efforts.15

15 For example, z can be code-flow and
data-flow. Programming is notorious
for having vast unobserved state.3 World models

Knowledge of past efforts can be represented either as a database of (con-
text,action,outcome) tuples or more usefully as a world model:

p(x, y, ϕ) ∝ wθ(x, y, ϕ)

Ideally a world model encapsulates full knowledge distilled from observa-
tions; from this full joint probability you can calculate the conditionals:

• The forward transform, p(y|x, ϕ), which is equivalent to running the
simulator. It can also be incremental: p(y′|x, y, ϕ,∆ϕ)

• The reverse transform, p(x|y, ϕ). (This tends to be intractable due to
computational irreducibility, but it can be locally approximated.)

• The ‘policy’ or posterior likelihood, p(ϕ|x, y). This too tends to be
globally intractable. We would like this to also be incremental: p(∆ϕ′|x, y, ϕ)

The full world model also implicitly defines a topology – Jacobians of
∂ϕ/∂x, ∂y/∂x, and ∂ϕ/∂y can be estimated when conditioned on interme-
diate data z. Likewise, the idea that the data lies on (at least a locally)
smooth manifold permits the computation of a similarity metric M(y, ŷ):
similar ϕ should produce similar y from fixed x.16 The similarity metric can 16 If the data does not lie on some

approximate manifold, then it’s effec-
tively chaotic and there is no sense do-
ing anything other than enumeration of
ϕ.

be calculated via the KL divergence:

M(y, ŷ) = DKL(p(ϕ|y, x)||p(ϕ|ŷ, x))

or the mutual information between the two distributions.
A similarity metric that reflects the topology created by the simulator

seems essential: you need to direct actions toward a goal (the specification)
in the absence of explicit reward signals. Hypothetically, a learned similarity
metric derived directly from the world model should do this.

3.1 Planning and Reasoning

Planning refers to the iterative generation of sequences of actions to obtain
a goal. It can be forward, in which case the forward transform p(y|x, ϕ) (or
the simulator g()) is used to estimate intermediate states; it can also be
backward (from an end goal), in which case the reverse transform p(x|y, ϕ)
is used. Planning typically involves search or dynamic programming like A*
which, like MCTS, is external to the world model.

Reasoning can be narrowly defined as the propagation of information
from one modality (e.g. end state or goal) to another (the action). For ex-
ample, you can mechanistically reason over a world model by asking “What
must I do to generate this output / obtain this state?” Reasoning is effec-
tively Bayesian inference over unknowns.

This indicates the use of an undirected graphical model as the world
model – the problem is that deep learning tooling & implementations are
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much more mature and scalable than Bayesian inference on graphs. Vari-
ational methods & variational free energy17 over factor graphs are another 17 As employed more broadly by active

inferenceapproach; see the recent dissertation by Koudahl [4] for progress on this
front.

Backprop is also a form of mechanistic reasoning: it propagates infor-
mation from the output to the weighs, answering the questions “How must
I change this weight to reduce the error?”. If the model is differentiable
or emits derivatives / Jacobians, then backprop can similarly be used for
propagating information / inference. (More discussion on reasoning below.)

4 Problem statement

Our task is to determine the structure(s) of wθ(x, y, ϕ) such that useful
quantities (forward / reverse transform, policy, partial derivatives or finite-
differences, and similarity metric) can be calculated.18 Additionally, the 18 They do not all need to be the

same function! But it could be nice
from a parameter re-use & generaliza-
tion standpoint.

model should support incremental and recursive ∆ϕ generation.

4.1 Hypothetical approaches

4.1.1 Energy-based world model

Rather than treating the function wθ as a probability density, we can think
about it as an energy:

l = Eθ(x, y, ϕ)

If we can define a E such that programs ϕ compatible with x, y have
lower energy Eθ(x, y, ϕ), then we can infer good programs by minimizing E
given x, y:

ϕ̃ = argmin
ϕ

Eθ(x, y, ϕ)

Alternately, if it’s difficult to explicitly construct a similarity metric
for the output space y (or for a latent space), we might instead define an
energy which can output the similarity between two outputs Eθ(y, y

′). By
measuring how close the output state y′ is to the goal state ŷ you can thereby
assess progress of the program ϕ.

If the function wθ is differentiable and information can be propagated
backwards – via the Jacobian of the energy function,∇ϕ[wθ(x, y, ϕ)], MCMC

sampling, or flow-based methods – then ϕ̃ can be estimated by holding x, y
constant while iteratively improving ϕ.

One problem with this is that wθ is a causal & usually information-
destroying process, and ϕ carries a lot of information, so naive backprop-
agation does not work well - or equivalently, MCMC takes a long time to
sample dense regions.

4.1.2 Likelihood-approaches

Another option is likelihood-based sampling,

p(ϕ|x, y) = p(y, x, ϕ)

p(x, y)
=

p(y|x, ϕ)p(x, ϕ)
p(x, y)

∼ p(y|g(x, ϕ))p(x, ϕ)

(Assuming that you can’t easily evaluate the joint probability p(x, y)). By
sequentially evaluating the likelihood of the data (perhaps with a noise
estimate, e.g. p(y|g(x, ϕ)) = N(µ, σ2)), and by observing features of the
input data p(x, ϕ) = p(x|ϕ)p(ϕ) (e.g. with a type system) you can do
coarse-to-fine program synthesis [ref]. Many symbolic regression approaches
adopt this; though ϕ is discrete / not directly optimizable, the process is
not necessarily inefficient.

4.1.3 Flow-based modelling

This seems presently like a decent approach:
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• Model p(∆ϕ|x, y, ϕ) via normalizing flow & train the model via super-
vised learning.

• Model the forward and reverse transforms via flow (or just use the
simulator for the forward transform).

• Use backprop to estimate the Jacobians for pointwise inference (i.e.
without propagating probabilities).

• Train the similarity metric as an independent function through con-
trastive learning.

All require aggressive OOD generalization for the active learning to work,
which will depend on the parametrization of each of these networks. Single-
pass function approximation (e.g. transformers) can be used in place of the
flow networks above, of course.

5 Appendix & thoughts

5.1 Reasoning

Three forms of mechanistic reasoning:

1. Gradient-based: If you have a forward causal model of the world, by taking
the partial derivative of the output relative to the input, you can assign
‘credit’ for effects, and then directly minimize over them. This could be
useful for figuring out where to edit given intermediate z.

2. Memory-mapping: If you record past experience - via a database or a struc-
tured model - then you can reverse-associate observed effects with past
causes. I suspect the brain does a fair bit of bidirectionalization of this
type.

3. Prior beliefs: Irrespective of paired or linked data, if you have recorded past
experiences (again via a database or model), then this forms a prior over
expected values of any given variable.

The question that we’re facing is how to reconcile, at the PyTorch level, these
three different sources of information? Each by itself can provide (linked, struc-
tural) information on input-output, but they provide redundant information: in-
ternal activation can be (say) dependent on the feedforward causal inputs, or it
can be dependent on priors (as is used in the hidden-layer DAE), or it can be
dependent on a associative inverse model (e.g. UDRL [5]).

Ideally, you have a fully direction-agnostic Bayesian network which factorizes
the joint distributions per above, and combines information in a principled statis-
tical manner. If each path of information provides a mean and variance (σ2 = ∞ if
no information is known), then you can combine the estimates by weighting based
on their precision = 1/σ2 But ... we don’t propagate precision through typical
neural networks, and so don’t have a good way of weighting? Can do MCMC
sampling to estimate variance / standard deviation, but this is slow - at least lin-
ear in the model dimension. Variational methods do estimate mean and variance;
we could train the network to do this (at what cost?), or add extra mixing param-
eters that are also learned (and predicted – they must be a function of the data,
of course.) Can this be fully modularized, so that each module takes multiple
inputs and ... provides estimates to those absent, via suitable transformations?
Isn’t this the dream of EBM?

In the case of a MLP, since the transformation is linear, it seems that a MAP
estimate is exactly a combination of backprop (asymptotically equivalent to the
W−1) and the prior, with iteration to combine the two.19 Assume also that you 19 Can you make such a system loop-

stable, such that you don’t need the
DAE?

can iteratively approximate the inverse of the forward weight matrix ala RLS, and
this is tolerant of overdetermined / underdetermined W .

In the case of a transformer layer = conditional-gather MLP, it should also be
it’s own inverse? With a denoising prior in there too? Perhaps the solution is to
simply train each layer, forward and inverse, normally (using SGD); to use a flow-
based method, it would be to train an ODE to transform between the distributions.
Yet we have the problem that frequently information is not provided to the model.

The crux of the problem seems to be: You clearly can train individual models
to represent the forward / reverse / policy / similarity functions using standard
supervised learning. This seems terribly redundant, though; it does not re-use
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intermediate representations and activations. Why can’t you bidirectionalize our
familiar and well-loved layers so that they look more Bayesian, and you can do
flexible inference on inputs, outputs, and actions - each even incrementally.
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