
A geometric argument for generalization

Timothy Hanson

Deep learning models generalize surprisingly well despite being overpa-
rameterized. Traditional measures of capacity, such as VC-dimension or
Rademacher complexity, suggest that overparameterization should lead to
overfitting – but it usually doesn’t. Prominent explanations for this phe-
nomenon include that stochastic graient descent (SGD) selects ’lottery tick-
ets’ from it’s weight initalization [1], that SGD learns smooth, low-order
functions first [2, 3] or that SGD exhibits implicit biases favoring solutions
with flat loss minima = better generalization [4, 5] (among others).

Here I propose here a complementary explanation based on the geometry
of high-dimensional spaces: a network starts out as an undifferentiated,
smooth and simple null model and moves toward complex differentiated
models through a finite series of small steps. With overparameterization
comes increased volume of the parameter space, but without change in the
ability for small steps to make progress – hence the resulting models remain
close to the null model, and thereby simple. (The idea does not explain
phenomena like grokking or double-descent - just generalization with early
stopping.)

This rather straighforward and obvious explanation is complementary
to the neural tangent kernel; while it’s a perspective on something already
known, it was a fun bit of experimentation & seems worth posting.

High-Dimensional Geometry and Hypothesis
Space Volume

As the number of parameters & activations in a neural network increases,
the total volume of the hypothesis space expands exponentially, with each
additional parameter adding a degree of freedom, and each activation adding
an axis of variation. This makes the network monotonically better able to
model arbitrary data. However, it doesn’t - why?

1. Boring Activations: Assuming that the internal activations of the
network do not ”blow up” (a condition that is both necessary and de-
sirable for stable training), both individual and layer activations start
out all being similar due to the concentration of measure. The con-
centration of measure says that when a variable depends broadly on
many others in a Lipshitz way - which is desirable in neural networks,
to make them trainable - its value tends toward a constant. Rather
than being ϵ-orthogonal (as would be the expected consequence of the
concentration of measure), this means that initial activation vectors
are correlated, but not so much so as to be indistinguishable. See
Figure 1. 1 A further wrinkle is imposed by normalization, like Layer- 1 This is directly related to the neu-

ral tangent kernel[6], where as the net-
work width goes to ∞, the activations
become perfectly gaussian

Norm or BatchNorm. Since both these are smoothly-varying functions
of their input, the concentration of measure applies to them; increasing
the number of parameters decreases the variance of the nomalization
constant, which makes those initial activations look even more ’null’.

2. Constrained Optimization Dynamics: Gradient-based optimiz-
ers, such as SGD and Adam, navigate the weight space through small,
finite steps. This itself limits the volume of parameter space they can
access, with an additional restriction from the scalar loss. The scalar
loss acts as a bottleneck for information about the direction and mag-
nitude of updates.

1

https://en.wikipedia.org/wiki/Concentration_of_measure
https://en.wikipedia.org/wiki/Neural_tangent_kernel
https://en.wikipedia.org/wiki/Neural_tangent_kernel


At initialization, the activations in non-output layers of the network
are similar, so separating them effectively requires the optimizer to
make a series of directional ”nudges.” The nudges tend to be noisy
due to techniques like dropout, intrinsic noise (or ambiguity) in the
source data, and lack of meaningful differentiation of upstream layer
tunings, which caps the signal-to-noise ratio of the loss-steps to b
bits. Limited SNR means b is “small”, which limits the precision and
direction of the weight updates.

Steps hence look a bit Brownian2, limiting distance; from a volume 2 Or not at all stochastic, in the case
of ‘pure’ gradient descentperspective, the limited bits per loss evaluation caps partitioning of the

space. Each partition can be thought of as a hyperplane perpendicular
to the gradient update step, and the SNR of the step defines the soft-
margin on the partition. Partitions hence slowly push the activations
away from the starting null hypothesis.

An more nuanced perspective from the literature is that the network
sequentially learns eigenmodes ?? or Fourier modes ??; the b bits per
step are used to set the position on the eigenvectors or the Fourier
coefficients.

Additional navigational constraints are introduced by algorithmic fea-
tures of optimizers like weight decay, gradient clipping, and per-axis
learning rate normalization3. Combined with batching (where a single 3 Momentum may increase the volume

by reducing the Brownian nature of the
minibatch gradient steps.

scalar loss, of limited SNR, aggregates information from multiple data
points), the total volume of hypothesis space that is practi-
cally accessible through optimization scales exponentially in
the number of training steps (each step can partition the hypoth-
esis volume by, ideally, b bits; overparameterization gets closer to this
upper bound because in high-D spaces there are no ’dead ends’, only
saddles), while it does not scale significantly with the number
of parameters or activations. This is why early stopping works
well.

Experiments

Cosine similarity

As a very preliminary and cursory test of the hypothesis, a small MNIST
model (of course!) was trained. The model has 4 layers, with a ReLU non-
linearity between each, of size 784, 512, 512, 10. LayerNorm can optionally
be enabled on the two hidden layers, and the optimizer was Adam (with or
without weight decay). Activations in the penultimate layer (layer 2 in the
figure - zero indexing) were recorded by running the 10k test set through
the network before and after training for 10 epochs to ∼ 98% accuracy. The
similarity of these activation vectors was measured through the normalized
dot-product aka cosine similarity4. As a control, the same activations were 4 I also experimented with normalized

L2 distance; the results hold for this as
well

permuted per input datapoint (control 1) or replaced with Gaussian random
numbers of the same mean and variance (control 2) before measuring the
similarity. A further manipulation was to permute the pixel order of the
input MNIST digits.

Figure 1 shows that even on this small network, the cosine similarity of
the initial layer activations (blue) deviates very significantly from expected
(controls 1 & 2). This initial similarity is nearly independent of input pixel
permutation (dashed green), as expected for the untrained network.

Training the network decreases this correlation (solid red) to span more
of the volume of activation space, and in the process pushing activations
not in the training distribution to be more similar (dashed orange).

To test scaling, this experiment was repeated on a MLP size 784-8192-
8192-10; all other parameters were unchanged. As expected from the con-
centration of measure, the control distributions become much narrower and
more peaked – 8192-dimensional vectors are more ϵ-orthogonal. Yet the
initial distribution of activation similarities remains nearly the same! Ini-
tial activations between different test digits are quite similar, even in a very

2



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity of Activations

0

1

2

3

4

Fr
eq

ue
nc

y

1e6 Activations (Layer 2)
Initial
Initial, control 1
Initial, control 2
Initial, permuted-pixels
Trained
Trained, control 1
Trained, control 2
Trained, permuted-pixels

Figure 1: Cosine similarity of activations of the penultimate layer in a 784-
512-512-10 unit MLP trained on MNIST.

high dimensional space, and as with the smaller network, training expands
their differences. See Figure 2.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cosine Similarity of Activations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Fr
eq

ue
nc

y

1e7 Activations (Layer 2)
Initial
Initial, control 1
Initial, control 2
Initial, permuted-pixels
Trained
Trained, control 1
Trained, control 2
Trained, permuted-pixels

Figure 2: Cosine similarity of activations of the penultimate layer in a 784-
8192-8192-10 unit MLP trained on MNIST.

Finally, the same experiment was run on a LeNet-5 network. This re-
sulted in even tighter clustering of initial activations. The convolutional
struture of LeNet-5 restricts the hypothesis space (as desired), particularly
restricting the starting or null hypotheses, which are all quite similar5. Tran- 5 TBD if this is a general trend - have

to try it out on transformers!ing again expands this distribution.

Activation volume

Some effort was applied to validate the claim that the volume of activations
increases with training. While this is trivially true – activations almost al-
ways grow in absolute magnitude with training – quantifying the change in
volume is challenging in high dimensions (is the increase in volume mean-
ingful?) 6 6 If you merely increase the activations,

this is not interesting; If each of the
activations is completely independent
and interchaneable, this is also not in-
teresting... quantifying this lies in the
realm of mutual information, which is
for another post.

One first-order avenue is to approximate the distribution of activations
as multivariate Gaussian & measure the volume through the determinant of
the covariance matrix. As the empirical covariance matrix is biased to over-
emphasize large eigenvalues, and under-emphasize small eigenvalues[7], in-
stead the SVD of the activation matrix was taken, and the determinant was
estimated fromt the clipped squared singular values, since if: A = UΣV T

then cov = ATA = V (ΣTΣ)V T . Rather than taking the full expression for
the volume of a multidimensional ellipse, we just use the log determinant,
“LD”, as a metric.

3



0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity of Activations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fr
eq

ue
nc

y

1e6 Activations (Layer 2)
Initial
Initial, control 1
Initial, control 2
Initial, permuted-pixels
Trained
Trained, control 1
Trained, control 2
Trained, permuted-pixels

Figure 3: Cosine similarity of activations of the penultimate layer in a
LeNet-5 trained on MNIST. Due to the convolutional layers, shuffled pixels
are out-of-domain and lead to very peaked/similar activations.

128 256 512 1024 2048
0

10000

20000

30000

128 256 512 1024 2048 3072 4096 6144 8192
0

1000

2000

3000

4000

5000

6000

Initial

Init permuted pixels

Trained

Train permuted pixels

Hidden width

L
o

g
d

e
te

rm
in

a
n

t

Figure 4: Log determinant of activations of the penultimate layer in
variable-width 4 layer MLPs trained with 10 epochs on MNIST.

What’s interesting is that the initial LD increases log-linearly with hid-
den dimension, as expected, while the trained LD saturates. With larger
networks, the volume of activations goes down with training (at least as
measured so coarsely). The control post-training (shuffled activations) con-
tinues to increase, suggesting that the activations are staying on a low-
dimensional manifold within the progressively larger space. Interestingly,
this effect persists without regularization! (L2 regularization decreases the
asymptotic log determinant; increasing the number of epoch increases it, as
expected.) SGD is not just limiting the volume explored – it is reducing the
volume spanned by the activations. See Table 1 for more detail.

4



Hidden Initial Init ctrl Init perm. Trained Train ctrl Train perm.
128 219 432 227 759 1372 557
256 392 866 389 1171 2689 812
512 712 1714 722 1564 5343 1024
1024 1247 3389 1242 2068 10497 1444
2048 2193 6605 2218 2679 20856 1914
3072 3005 9744 3001 2919 30699 2447
4096 3678 12750 3678 3045 40604 2575
6144 4733 18116 4737 3075 56511 2808
8192 5566 22233 5552 3101 66665 2925

Table 1: Data: Log determinant of activations of the penultimate layer in
variable-width 4 layer MLPs trained on MNIST. ‘Ctrl’ permuted the source
digit identity for each of the hidden layer neurons (i.e. permute along the
first axis of the data array, independently for each hidden layer) ‘Perm‘
permuted the input pixels.

Implications for Generalization

The geometric effects work to impose a strong simplicity bias on overpa-
rameterized networks:

• Starting Simplicity: (1) implies that overparameterized networks
begin their training journey in regions of the hypothesis space where
solutions are minimally differentiated from the null hypothesis. Re-
gardless of the network’s structure, activations and weights initially
look ”the same.”

• Constrained Exploration: (2) suggests that the volume of hypoth-
esis space navigable by the optimizer is small and concentrated near
the start. Consequently, the reachable solutions are inherently simple
and tend to generalize well, as they reflect minimal complexity relative
to the vast hypothesis space7 7 As an aside, this is how most engi-

neering proceeds as well – start simple
and gradually elaborate. What’s miss-
ing from this analogy is refactoring or
compression; regularization might be
able to do this

This hypothesis also suggests that once away from the null hypothesis,
it’s rather hard to navigate back toward simplicity. Distillation seems like
a practical means of avoiding the limit, but further experiments with this
& with regularization are required.

It also should be noted that small steps are but one way of moving
around hypothesis space ...

5



References

[1] J. Frankle and M. Carbin, “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks.” http://arxiv.org/abs/1803.03635

[2] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. A. Hamprecht,
Y. Bengio, and A. Courville, “On the Spectral Bias of Neural Networks.”

[3] Y. Cao, Z. Fang, Y. Wu, D.-X. Zhou, and Q. Gu. Towards Understanding
the Spectral Bias of Deep Learning. http://arxiv.org/abs/1912.01198

[4] S. Hochreiter and J. Schmidhuber, “Flat Minima,” vol. 9, no. 1, pp.
1–42. https://direct.mit.edu/neco/article/9/1/1-42/6027

[5] S. L. Smith and Q. V. Le. A Bayesian Perspective on Generalization
and Stochastic Gradient Descent. http://arxiv.org/abs/1710.06451

[6] A. Jacot, F. Gabriel, and C. Hongler. Neural Tangent Kernel:
Convergence and Generalization in Neural Networks. http://arxiv.org/
abs/1806.07572

[7] J.-H. Won, J. Lim, S.-J. Kim, and B. Rajaratnam, “Condition Number
Regularized Covariance Estimation,” vol. 75, no. 3, pp. 427–450.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667751/

6

http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1912.01198
https://direct.mit.edu/neco/article/9/1/1-42/6027
http://arxiv.org/abs/1710.06451
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667751/

