
Guided Discrete Diffusion for Constraint Satisfaction Problems

Justin Jung

January 13, 2025

Introduction

AI for constraint satisfaction problems is an important field researched for more than half a century.
Sudoku, a puzzle where no row, column, or block can have two of the same number, is a popular benchmark
to assess the ability of models to reason over constraints. With the rise of deep learning, many deep
neural networks have been used to solve sudoku, such as transformers and graph neural networks. These
networks perform well but are trained under supervision and assume access to a labelled dataset. Given
the importance of identifying patterns in the structure of Sudoku solutions, these supervised methods may
be limited in their capability to generalize to unseen puzzles (as combinatorially many exist) or perform
well under limited data settings—and at the minimum, require a supervised dataset of initial puzzles x
to final puzzle solutions y.

Thus we instead employ an unsupervised generative modelling approach to learn the distribution of
sudoku puzzles in hopes that our model learns moreso the structures and patterns of sudoku puzzles.
Diffusion is a widely used generative model for all kinds of settings, and here we apply it to learn Sudoku
puzzles. Since sudoku (a board that is a nine by nine matrix filled with numbers one through nine) is
inherently a matrix of discrete numbers, we use a discrete diffusion model. While continous diffusion
(such as the popular DDPM) can be used if sudoku boards are relaxed and represented in continuous
space R9×9, we believe that preserving the discrete nature of Sudoku puzzles is more natural and so opt
for a discrete diffusion model.

Background

Diffusion at a very high level is a generative model defined by a forward markov chain (which “corrupts”
the actual data distribution we care about to some prior distribution easy to sample from, such as complete
noise); it aims to learn the reverse markov chain which can take a sample from the prior and progressively
“decorrupt it” and transform it to a sample who comes from a distribution approximate to the actual
data distribution we wish to learn. (For a more extensive treatment of diffusion models, Calvin Luo has
a good tutorial (Luo 2022)).

For discrete data, (Austin et al. 2021) introduce Discrete Denoising Diffusion Probabilistic Models.
(For a more extensive treatment, please refer to their work “Structured Denoising Diffusion Models in
Discrete State-Spaces”). A sequence xt ∈ ZL of L many discrete categorical variables of K categories
x ∈ [K] has a forward corrupting markov chain defined by a transition kernel matrix Qt ∈ RK×K. In
the forward process, the transition kernel matrix Qt is applied to all tokens or categorical variables in
the sequence xt independently (categorical variables are represented as one-hot vectors x ∈ ZK); thus for
clarity we can just focus on the case where our sequence has one token L = 1 and we collapse to a single
categorical variable x. The one timestep forward transition probability of a categorical variable x is the
categorical distribution induced by applying the kernel matrix to the previous state of x; q(xt|xt−1) =
Cat(xt; p = xt−1Qt) . Discrete Denoising Diffusion Probabilistic Models (D3PM) only work with discrete
time markov chains; however, as seen later, more general continuous time diffusion models exist as well.

In the discrete time setting, the goal of diffusion is to learn the reverse transition process at each
timestep, which is defined by pθ(xt−1|xt). While this one step reverse transition can be directly modelled

1

Figure 1: Categorical Noise Process (Gruver et al. 2023)

by a network, Austin et al. parameterize the one step transition through a denoiser p̃θ(x̃0|xt):

pθ(xt−1|xt) ∝
∑
x̃0

q(xt−1, xt|x̃0)p̃θ(x̃0|xt)

where the denoiser is learned with a neural network. In brief this parametrization comes from ap-
plications of Bayes rule, where q(xt−1|xt, x̃0) = q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0) is derived using Bayes and we also
have

q(xt−1, xt|x̃0)p̃θ(x̃0|xt) = q(xt−1|xt, x̃0)q(xt|x̃0)p̃θ(x̃0|xt) ∝ q(xt−1|xt,x̃0)p̃θ(x̃0|xt)

where with our construction of the forward process we have q(xt|x̃0) = Cat(xt; p = x0Q̄t) where
Q̄t = ∏t

i=1 Qi is the cumulative product of the absorbing transition kernels over time and we can also
calculate (derivation is slightly involved) q(xt−1|xt, x0) .

One thing that is important to note is that in the forward process, our transition kernel matrix Qt

is applied to each token in the sequence independently, meaning that each categorical variable forward
diffuses independent of the other tokens. However, in the reverse diffusion process, this is not the case—our
denoiser network p̃θ(x̃0|xt) is a neural network that conditions on all tokens in the sequence xt = [xt]Ll=1.

This parameterization of a denoiser p̃θ(x̃0|xt) allows for flexible calculation of transitions, such as
skipping k-steps at once

pθ(xt−k|xt) ∝
∑
x̃0

q(xt−k, xt|x̃0)p̃θ(x̃0|xt)

Austin et al. consider various transition matrices Qt; we choose the simple absorbing transition kernel
where a state transitions to absorbing state [MASK] with probability βt, else stays the same. This simple
transition kernel matrix allows for easy calculation of q(xt|x0) = Cat(xt; p = x0Q̄t).

For the general transition kernel, we have as our diffusion loss objective for our denoiser p̃θ(x̃0|xt) as

Lλ = LV B + λEq(x0)Eq(xt|x0)[−logp̃θ(x0|xt)]

where the variational lower bound loss is defined as

LV B = Eq(x0)[DKL[q(xT |x0)||p(xT)]+
T∑

t=2
Eq(xt|x0)[DKL[q(xt−1|xt, x0)||pθ(xt−1|xt)]]−Eq(x1|x0)[logpθ(x0|x1)]]

Fortunately, Austin et al. conveniently show that the generative masked language model (MLM)
objective (inferring the unmasked token of a masked token, as in the LLM BERT objective) is equivalent
to our diffusion loss objective Lλ under the simple absorbing transition kernel. Thus it is enough for our
model to infer the unmasked token of a masked token—and consequently it is enough for our loss function
to simply be the cross entropy or log loss over the masked tokens.

2

Thus, we define the simple likelihood objective of predicting the unmasked tokens. With abuse of
notation, we can simply write this as the cross entropy loss of predicting the actual unmasked sequences
w0 drawn from our actual data distribution q(w0) given the masked sequences wt drawn from the forward
transition distribution p(wt|w0):

L(θ) = Ew0,t[− logpθ(w0|wt)] wt ∼ p(wt|w0)

More accurately, our cross entropy loss is calculated only over the tokens which are masked (say
denoted by set of indices I)

L(θ) = Ew0,t[
1
I

∑
i:[wt]i=[MASK]

−logpθ([w0]i|wt)] wt ∼ p(wt|w0)

As usual we assume that our given dataset {w0} is drawn i.i.d from the actual data distribution q(x0).
To implement this loss in practice, our loss function is calculated over minibatches defined from the given
training data {w0}; for each datapoint w0 in our minibatch we sample t ∼ Unif{[0, T}, our corrupted
sequence wt ∼ q(xt|x0, t), and then calculate an average of the cross entropy loss over the masked tokens.

MLM discrete diffusion for sudoku

To make the application of MLM discrete diffusion to sudoku concrete, we consider a dataset of sudoku
solutions which we flatten row-wise into vectors {w0 ∈ Z81} containing tokens of digits one through nine.
Then, using the MLM cross entropy objective above, we train our diffusion model, defined by a learned
denoiser p̃θ(w̃0|wt). Once our denoiser is learned, we can kick start the sudoku solution generation process
by first drawing an initial sample wT from the absorbing state prior (which is simply all [MASK] tokens)
and then iteratively sample from the reverse transition probability

pθ(wt−1|wt) =
∑
w̃0

p(wt−1|wt,w̃0)pθ(w̃0|wt)

for each timestep t ∈ [T, 1] to generate our datapoint ŵ0.
This above process takes a completely informationless sequence of [MASK] tokens and generates a

(hopefully realistic and valid) sudoku solution; however, it is simply a sudoku solution. To generate
solutions corresponding to some initial sudoku board x, we use infilling generation. At each time step
t ∈ [T, 0] in the reverse process (including the prior sample), given some partially filled initial board x
with non-empty cells/tokens with indices i ∈ I , we replace all tokens in the diffusion output wt with
indices i ∈ I to be the corresponding token in the initial board x, or ∀i ∈ I [wt]i := [x]i. This ensures
that our reverse generation process generates a sudoku solution conditioned on the given initial sudoku
board.

Guiding MLM discrete diffusion models

Above we saw that we can train a MLM discrete diffusion model to learn the distribution of sudoku
puzzles and also condition on a given initial board to generate a corresponding solution.

While this is reasonably performant, we can improve the output generation process by incorporating
guidance from some relevant value function . In our case, we want to ensure that the solution satisfy
the constraints of sudoku (no digit must be duplicated in any given row, column, or block) so we can
incorporate some value function v(w) which scores how well a proposed solution satisfies the constraints.
To get this value function in practice, given a dataset of some (partially incorrect) sudoku solutions and
the number of row/column/block constraints violated, we can train a network in a supervised manner to
predict how few constraints a given proposed sudoku solution violates.

The immediate challenge with incorporating a value function v(w) is that the value function might
have a discrete domain: in our case, the value function scores a sudoku board w which is a sequence of

3

Figure 2: Gradient Flow With Categorical Variable (Jang et al. 2017)

discrete tokens. A discrete domain is not differentiable, which poses a question of how the value function
signal would be incorporated in the diffusion generation process.

One workaround is to shift to a continuous domain rather than a discrete domain. For example one
could embed all sudoku boards w not as discrete tokens but as real valued sequences w ∈ R81. Alternately
one could train a seperate value function that is defined not on discrete sequences w but rather some
continuous hidden logits h corresponding to the discrete sequences. This is in fact what (Gruver et
al. 2023) do with protein sequences: for any given (noisy) sequence wt in the reverse diffusion process
they take hidden states (which hidden layer is left as a choice parameter) ht from a trained diffusion
decoder p̃θ(w̃0|wt) and then utilize a value function defined on the (noisy) hidden states v(ht) . Since
by construction v is differentiable with continuous inputs h, we can take gradients of v(h) to guide the
original logits ht from the diffusion denoiser p̃θ(w̃0|wt). However, this requires training a value function
based on noisy hidden states and moroever requires the value function to be tied down to the outputs of
one specific trained diffusion model p̃θ(w̃0|wt).

In many settings, this assumption may not be applicable and we may only have access to a value
function that is defined on the actual outputs: say a function v(w) that scores how constraint satisfying a
given discrete sudoku board w is or as a more practical example a function f(p) which scores how correct
a program p is.

To work around this, we can rely on the gumbel softmax trick, explained briefly below.

Gumbel Softmax Trick

The Gumbel Softmax trick introduced by (Jang et al. 2017) allows for gradients to flow through a discrete
or categorical variable.

In our case we want the gradients to flow with our setup h → w → v(w); w ∼ Cat(π(h)) is sampled
from the categorical probability distribution π defined by logits h and then our value function v scores
the discrete sample w. The problem is that we have a discrete categorical sample w in the middle, which
prevents calculation of ∇hw (and for that matter ∇πw) without any tricks. For simplicity let us now
imagine that our sequence has length one: this means that our “sequence” is a categorical variable sampled
from some probability distribution vector π with class probabilities πi. (In reality, with a sequence of
length L, we would need a vector of class probabilities for each token in the sequence.)

More than half a century ago Gumbel proposed an efficient trick called the “Gumbel trick” to draw
samples w from a categorical distribution defined by a vector of class probabilitites π:

w = onehot(argmaxi[gi + logπi])

4

where gi are i.i.d Gumbel(0, 1) variables.
(Jang et al. 2017) introduces a continuous approximation of the argmax using softmax, explaining

the name “Gumbel softmax trick”. As τ → 0, the vector y defined by

yi = exp((logπi + gi)/τ)∑
j exp((logπj + gj)/τ)

approaches the one-hot vector w defined by the argmax. This is a continuous relaxation and we see that
our vector y ends up differentiable with respect to the probabilities π, albeit being a continous vector
rather than a discrete vector. With this approximation we now have a work around to approximate the
gradient of our sample ∇πw using the approximation ∇πy.

However, we do not need to keep our output y continuous. Similar to the straight through estimator,
for the forward pass we can discretize our continuous y using argmax, leading to a desired discrete
categorical variable w that can be passed to v(w); for the backpropagation step we can swap out the
intractable ∇πw for our approximation ∇πy.

Adding guidance in reverse process

Now that we can flow gradients from our constraint value function v(w) defined on sudoku board sequences,
we can incorporate such gradients in our reverse sample generation process.

We do this by working in the logit space and guiding the initial logits from the diffusion denoiser
p̃θ(w̃0|wt). Naively, one might just simply add the gradient directly, such as h′ = h + ∇hv(gum(h)).
However this poses a tradeoff between generating realistic samples faithful to the data distribution (coming
from diffusion logits h) and generating samples which maximize the constraint value function v(w).

(Dathathri et al. 2020) in their work on plug and play language models handle this by regularizing
the guided logits to the initial logits. Borrowing from this, our entire guided update step looks like

hi+1 = hi + ∇hv(gum(hi)) + λ∇hKL(π(h0)||π(hi))

where i represents the update index and h0 are the initial logits.
Now at each reverse sampling timestep we update our logits with multiple regularized gradient ascent

update steps. This leads the reverse process to bias towards final samples w0 that end up having a high
constraint satisfaction score, leading to better solutions.

The entire sampling algorithm is shown in Figure 3.
The impact of guidance on solve rate is shown in the results, Figure 4. We see that by adding constraint

guidance we are able to increase the solve rate from 85.2% to 90.6%.

Score Entropy Discrete Diffusion

Score Entropy Discrete Diffusion (SEDD) introduced by (Lou et al. 2023) is a competitive, state of the
art discrete diffusion model which outperforms similarly sized GPT models on perplexity scores. (An apt
treatment on score entropy discrete diffusion models is out of the scope of this post, but for a introduction
Lou’s blog post is a good starting point (Lou 2024)).

In comparison to previous diffusion models such as D3PM or the canonical DDPM, score entropy
discrete diffusion is based on a continuous time markov chain.

Now, for some categorical variable x ∈ [K] with class probability mass vectors p ∈ RK , we can
characterize the probability distribution p evolving over continuous time, {pt}, using a differential equation
rather than a bunch of discrete transition probabilities:

dpt

dt
= Qtpt p0 ≈ pdata

Here Qt ∈ RN×N is our diffusion matrix which evolve our probability vectors and define our forward
markov chain. (Similar to our explanation of D3PM, we consider the case of only a single categorical

5

Figure 3: Guided MLM Sampling Algorithm

variable: we will see why this is sufficient even when working with discrete sequences with many tokens
later on.)

A neat result shows that with our forward continuous time markov chain given by Qt there exists a
corresponding reversal continuous time markov chain given by a reversal diffusion matrix Q̄t:

dpT −t

dt
= Q̄T −tpT −t

where we can define our reversal matrix Q̄t in terms of the forward matrix Qt: Q̄t(y, x) = pt(y)
pt(x)Qt(x, y)

and Q̄t(x, x) = −
∑

y ̸=x Q̄t(y, x).
In practice, we need to simulate the forward or reverse process and so for computational feasibility we

use an approximation to this differential equation; in particular we consider a first order or linear Euler
approximation and we have our approximate transition probabilities as

p(xt+∆t = y|xt = x) ≈ δxy + Qt(y, x)∆t

and
p(xt−∆t = y|xt = x) ≈ δyx + Q̄t(y, x)∆t = δyx + pt(y)

pt(x)Qt(x, y)∆t

where both approximations are accurate up to error O(∆t2) and δ represents the dirac-delta function.
Now given a defined forward process Qt, if we want to generate samples using the reverse process we

can simply look at the reverse transition probability above and see that all we need is the ratio pt(y)
pt(x) . At

a high level what SEDD is doing is learning this ratio using a deep network, sθ(y)x = pt(y)
pt(x) , and then

using this learned network in the reverse process simulation to generate samples.
Now in reality, we are dealing not with a single categorical variable but rather sequences x ∈ ZL of

many categorical variables. This significantly increases the number of all possible ratios sθ(y)x (in fact
to exponential complexity). Thus for computational tractability, following (Campbell et al. 2022) they
factorize the sequence and just have each token or categorical variable evolve independently of each other.
Now, given that we are in a continuous time setting, the probability of two or more variables in a sequence
evolving at same point in time t is zero: thus we only keep track of one token in the sequence transitioning
for any time t.

6

Figure 4: Sudoku Performance

Notationally, with a sequence x = (x1...xL), we only need to keep track of some token with index i
transitioning to some value x̂i and so our network only has to learn the ratio that differs by one token:
sθ(x, t)i,x̂i ≈ pt(x1...x̂i...xL)

pt(x1...xi...xL) .
However, if we only change one token at each timestep, this means that for any given evolution most

tokens will remain the same doing nothing and for long sequences L ≫ 1 our reverse process simulation
will take a very long time to generate a final sequence sample. As a computational speed up, SEDD can
employ tau-leaping, which is an approximation method to speed up sampling by essentially independently
sampling each token in the sequence for each timestep.

With these tricks, SEDD is able to generate samples of high cardinality and dimensionality such as
language sequences with reasonable computation.

SEDD for sudoku We train SEDD on sudoku board sequences w represented as sequences of cate-
gorical tokens as before. Given a trained SEDD network, to solve a given initial sudoku board, we again
employ conditional infilling: in each timestep of the reverse sampling process, we replace the diffusion
output to contain the non-empty initial sudoku tokens.

What we see in our results is that SEDD demonstrates state of the art sample efficiency on SATNet,
a common Sudoku benchmark. Other models such as transformer or graph based supervised networks
trained on SATNet also achieve 100% solve rate accuracy on SATNet and so SEDD is not any more
competitive than typical supervised methods. However, it is notable that even with an order of magnitude
less training data, learning from only hundreds of puzzle solutions (no supervised data needed) we get
performant results.

Results

We demonstrate the results of our discrete diffusion model against some baselines. Palm is a graph neural
network and Yang is a recurrent transformer, both trained with supervised datasets. DDCSP is the MLM
discrete diffusion model. While DDCSP is not as performant as the supervised networks, we see that
with guidance performance increases considerably. SEDD, the state of the art discrete diffusion model, is
competitive with the supervised baselines.

7

Conclusion

In summary, we have shown how discrete diffusion models offer competitive performance on constraint
satisfaction problems such as sudoku. By employing a guidance technique, we are able to further improve
diffusion output solve rate. Moreover, we show that even with limited samples, state of the art discrete
diffusion models exhibit performant behavior on sudoku benchmarks. A natural next step is to add
guidance to the score entropy discrete diffusion process and see how guidance improves performance and
sample efficiency.

Acknowledgements

I would like to thank Tim Hanson for reviewing this paper and providing feedback. This work was made
possible through the philanthropic support of Schmidt Futures.

References

• Austin, J., Johnson, D. D., Ho, J., Tarlow, D., & van den Berg, R. (2021). Structured Denoising
Diffusion Models in Discrete State-Spaces.

• Bansal, A., Chu, H-M., Schwarzschild, A., Sengupta, S., Goldblum, M., Geiping, J., & Goldstein,
T. (2023). Universal Guidance for Diffusion Models.

• Campbell, A., Benton, J., De Bortoli, V., Rainforth, T., Deligiannidis, G., & Doucet, A. (2022). A
Continuous Time Framework for Discrete Denoising Models.

• Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E., Molino, P., Yosinski, J., & Liu, R. (2020).
Plug and Play Language Models: A Simple Approach to Controlled Text Generation.

• Dhariwal, P., & Nichol, A. (2021). Diffusion models beat gans on image synthesis.

• Gruver, N., et al. (2023). Protein design with guided discrete diffusion.

• Ho, J., & Salimans, T. (2022). Classifier-Free Diffusion Guidance.

• Jang, E., Gu, S., & Poole, B. (2017). Categorical Reparameterization with Gumbel-Softmax.

• Lou, A., et al. (2023). Discrete diffusion modeling by estimating the ratios of the data distribution.

• Lou, A. (2024). Language Modeling by Estimating the Ratios of the Data Distribution.

• Luo, C. (2022). Understanding Diffusion Models: A Unified Perspective.

• Palm, R. B., Paquet, U., & Winther, O. (2018). Recurrent Relational Networks.

• Yang, Z., Ishay, A., & Lee, J. (2023). Learning to Solve Constraint Satisfaction Problems with
Recurrent Transformer.

8

