
1 Which can be formalized, to some de-
gree – see [1].

2 In my opinon!

3 Note: strange loops in machine learn-
ing is not a new idea by any measure
– Yann LeCun mentioned it years ago,
see this youtube talk

4 Sudoku, the most familiar of CSPs,
is none-the-less NP-complete when ex-
panded beyond the 9 x 9 grid; indeed,
the hardest sudokus require multiple
levels of graph-coloring & chained in-
ference to directly solve.

To make a (ML) strange loop

1 Introduction

A key component of science is model induction – the translation of obser-
vation into models. In an analogy1 to statistical mechanics & thermody-
namics, one can think of this process as ‘pumping computational entropy’ -
moving data (entropy of relations, as opposed to entropy of points) from a
static repository into a computational or operational form. Such a ‘pump’
can also be run between different computational repositories, for translation,
re-representation, compression, or other forms of optimization.

This idea of pumping computational entropy is2 a more well-defined,
principled, actionable, and moral of a goal for machine learning than “AGI”.
Much the same way that industrial revolutions of the past have pumped /
transformed and moved physical entropy (or enthalpy), with machine learn-
ing we now pump information. Science itself is such a pump, one which
uses models to seed and select (potentially costly) observations, which are
then compressed into models. The resulting understanding - computational
models - can be used to advance technology, fix ourselves or our world, or
critically work as computational pumps, translators, or compressors: mod-
elling model induction = building pumps.

This gets to another other salient fact about science (and mathematics):
they are strange loops – what Douglas Hofstadter defined as any system that
self-referentially acts upon itself. In his book I am a strange loop, he gives
a few examples of, most notably Godel’s incompleteness theorem and our
conscious selves. Science and mathematics also act upon themselves, self-
modify, self-reference, and re-exploit computational and representational
motifs at all levels for compression & understanding; their ability to self-
reference is instrumental for inducing new models & pumps in themselves –
this is what science is! Modelling model induction implies a strange loop,
too.

The goal of Springtail is to build a machine-learning strange loop.

2 Why

The need for such a system became clear during the past ∼1.5 years of
research undertaken on small mechanistic reasoning models3. Our mod-
els focus on solving constraint-satisfaction problems, which can be small
enough for 1-minute training experiments, but expansive to large and hard
real-world problems (e.g. placement and routing for PCB or IC/ASIC de-
sign).4 Part of the work focused on representational efficiency and out-of-
data generalization, for which we developed a new form of transformer atten-
tion. Other work, undertaken by Justin Jung, focused on data efficiency;
he showed that diffusion dramatically decreases the data requirements of
transformers.

2.1 Data efficiency

In the many experiments on increasingly hard problems, it was always us
that closed the final informational loop, always the humans at the keyboards
that injected or changed the models or algorithms to improve the fit, com-
pression, or pumping. This is by necessity: ML models can readily learn
heuristics from troves of data, but on symbolic & model-induction tasks (like

1

https://www.youtube.com/watch?v=IbjF5VjniVE
https://springtail.ai/wp/2025/01/14/guided-discrete-diffusion-for-constraint-satisfaction-problems/

5 Usually discrete spaces, as opposed
to the high-dimensional and undercon-
trained spaces often found in ML.

6 C.f. Jacques Pitrat’s pioneering
work, which used a hierarchy of work-
ers - managers - supervisors to close
successively larger and larger feedback
loops [7]

7 For example, OpenAI o3, which
solved many ARC challenge puzzles -
albeit after generating millions of to-
kens

8 Yann leCun - Why Can’t AI make it’s
own discoveries

9 A dominant hypothesis is that rein-
forcement learning on LLMs (RLHF,
RLVR) does not induce new structure
in models, rather it re-weights struc-
ture already there. This is supported
by observed reduction in diversity and
’catastrophic forgetting’ following fine
tuning [9].

10 That same critical eye here will
note that even vanilla transformers are
Turing complete, given infinite tokens,
and either unlimited layers[10] or un-
limited latent dimension (hence un-
bounded compute). This is true, but
we are seeking something more general
& efficient. Higher-order operations
are possible in low-order systems; you
can design a binary adder in Conway’s
Game of Life, but it requires polyno-
mial state and compute. Increasing the
fundamental arity of the model’s op-
erations is essential for making “sym-
bols pushing around symbols” work in
bounded space.

changing model structure), even the largest models struggle [2]. Frustrat-
ingly, the algorithms and meta-algorithms for accomplishing sample-efficient
learning are the same as the algorithms being learned by the un-
derlying models! Namely: search, counterfactual reasoning, backtrack-
ing, basic set operations, modus tollens, modus ponens, law of the excluded
middle, and other algorithms for (Bayesian) induction / deduction.

Collectively, these human-invented rules are far more data and compute
efficient in their particular domains5 than SGD and its cousins operating
in high-dimensional deep-learning space. SGD has the strong advantage of
generality, statistical robustness, and in some cases near-optimal efficiency
[3], but it defaults to memorizing or one-step approximation [4], learning
heuristics [5]; and only later (with much more data, algorithmic changes
like diffusion, or researcher intervention) will it learn parsimonious func-
tional forms [6]. These forms are computationally compressed but only
somewhat generalize out-of-data, as desired; they also tend to be black box
& inscrutable, so are hard to invalidate, as required for science.

Why are we always using a slow learning algorithms, even after learning
fast inference rules? The answer, of course, is that normal machine-learning
workflow separates the model (some form of parameterized neural network)
and the optimizer/pump (a variant of SGD).

Removing the delineation requires a strange loop6.
See Figures 1 and 2 for illustrations how strange loops can collapse depth-

and breadth-wise open-ended modelling problems.

2.2 Aren’t we there already?

A critical eye will note that modern ‘reasoning’ LLMs already evince a
strange loop - they generate and ingest their own tokens, triggering rounds
of perception and generation that can solve hard problems7. This is a
fair criticism; I cannot discount the tremendous progress & advances made
over the past few years. Yet if the ultimate pump is some form of SGD,
building novel functional structures, as required for open-ended compression
or scientific model induction, will require boil-the-ocean levels of compute
and data [8] (e.g. from oracles, as DeepSeek is doing, and was likely required
to train o3 to solve the ARC challenge).

Beyond environmental and capital cost of the current approach, there are
real algorithmic reasons for insisting that it won’t get to arbitrary computa-
tional entropy pumping (the principled version of “AGI”) or even discovery8.
In the weaker token-only strange loop reasoning, some pumping can be done
by rules of inference, selection, and perceptual modules/functions learned by
the LLM from human examples9, but the final pump is always some form of
SGD, with its generality but undesirable limitations mentioned above. Put
another way: the complexity of the pump does not directly increase with
time, limiting the ability to go against arbitrarily-high entropic barriers. To
return to the industrial revolution analogy, we need our tools to be able to
lift heavier loads than us.

3 How

There are at least three technical innovations required to create a strange
loop in a machine learning model.

3.1

Primary is the need for what Douglas Hofstadter calls ‘symbols pushing
around symbols’ - more concretely, the ability for symbols (tokens) to mod-
ify the content and linkages between other tokens, irrespective of their con-
tents. Vanilla transformers can only do this by emitting and re-ingesting
tokens, as the graph of operations in the feed-forward architecture is ef-
fectively limited to ‘gather’ operations10. To address this we are actively
developing a novel attention module for PyTorch that allows for symbols to

2

https://arcprize.org/blog/oai-o3-pub-breakthrough
https://www.youtube.com/watch?v=qvNCVYkHKfg
https://www.youtube.com/watch?v=qvNCVYkHKfg

E O APM
R

E O

O,A,O',RO,A,O',R IM1 PM'

PM,ΔPM,PM' IM2 IM1'

...

O,A,O',RO,A,O',R

(1)

(2)

(3)

Figure 1: Graphical illustration of a depth-wise strange loop in machine learning.
(1) Standard world-actor setup: the environment emits an observation, which is
used by the policy model to select an action. The environment takes the action
and reacts with a new observation and a reward. (2) Second-level learning task:
given [sets] of observations, actions, and rewards, the task of an inference model
is to update the policy model. In typical model-free reinforcement learning, the
inference model is backprop over the policy model. This tends not to be sam-
ple efficient unless the policy model is tailored to the RL task. We remove this
restriction, and allow the inference model to be a mix of learned algorithms &
heuristics: rules of inference, intuitions, reductions & scope changes, etc. These
algorithms can be used in a loop, much the same way that RL uses replay: pre-
dictions from the policy model are compared to the original data for updating
the model. (3) Third-level learning task: given sets of different policy models and
changes, the inference model makes changes or adjustments to the set of rules
that lead to generating the policy model. These can include elements of what
humans often use when tuning and creating improved models: symmetry seeking,
mathematical re-casting, algebraic or topological transformation (e.g. Fourier or
Laplace features..). The strange loop is formed by setting IM1 = IM2 = PM .
All models are symbolic-heuristic representations running on the same substrate
- the System 1/2 novel transformer, only with different contexts.

E O APM
R

E O

WM

O,A,O',RO,A,O',R IM1 WM' O,A,O',R

(1)

(2)

Figure 2: Graphical illustration of a breadth-wise strange loop in machine learn-
ing. (1) Same setup as figure 1: the environment emits an observation, which is
used by the policy model to select an action. The environment takes the action
and reacts with a new observation and a reward. Indicated is model-based re-
inforcement learning, where world model is used to propagate information from
the reward back to the action and to the policy model. World models can be used
to better assign causes to effects, improving the sample efficiency of learning. (2)
The world model is induced from the inference model from sets of observation,
action, and reward tuples, and again is trained with the help of predictions. This
is instead of a policy model in Figure 1. Analogous arguments can be made for
the inference model building a “reward model” for creating an ordering for ob-
served responses. Such decisions – where to potentially cut possible dependency
networks / computational graphs – are fundamentally no different from ‘deciding’
to set a weight in a network to zero, only they typically are made by algorithms
other than backprop, since they need to be made from very few examples. An
inference model can search over the breadth of different factorizations of the prob-
lem, beyond the illustrated RL example, to compress and understand it.

3

11 George Morgan, head of Symbol-
ica AI, has mentioned that they too
are working on higher-arity networks,
and have had some success translating
group and category theory concepts to
it. While this remains unpublished, it
seems promising!

12 Softmax has the strong benefit in
that its Jacobian has a bound norm,
which means that attention has a
strong sparsity prior [12]. Thankfully,
L1 attention can use softmax as well.

13 Specifically, transformers instanti-
ate linkages based on correlations in
subspaces of the query and key vec-
tors; these linkages have the essential
feature that they can forward arbitrary
other subspaces of the latent token
space. The issue is that this latent to-
ken space, while potentially very large
(12k dimensions in some LLMs) is still
just a vector space, and not a compo-
sitional and extensible structure in and
of itself (as the whole context across all
tokens is). This is likely why you find
superposition[13] within latent space.
A hypothetical solution is to make a
inner-transformer to operate on the la-
tent space of the outer transformer, but
this only moves and does not solve the
problem!

create or destroy connections between other tokens11. We have a prototype
in PyTorch and C++, and are finishing the CUDA implementation.

3.2

Second is enabling truly ‘relocatable’ and callable functional modules: (A)
the algorithms learned by the model & instantiated into the transformer’s
heads need to by default generalize out-of-domain (OOD), and (B) modules
work flexibly based on the underlying symbolic schema. This is a direct
consequence of the need to learn rules of inference, which act as higher-level
functions from computer science.

� (A) We’ve begun tackling the OOD problem by using the L1 trans-
former to encode linear spaces with reals, rather than Fourier fea-
tures [6]; this allows for transparent encoding of extensible spaces,
easier “pointer access” for computed addressing (which otherwise re-
quires trigonometric function calculation, e.g. with RoPE / Fourier
features). Due to the intrinsically variable scaling of linear spaces,
this makes training harder, though there are precedents for stable
normalization [11] 12.

� (B) Is addressed (also) by the novel attention module, which is de-
signed to allow for direct manipulations of linkages while retaining the
transformer approximation of vector-valued edges, which compresses
a O(dn2) space into O(dn).

– This will also allow a relational tagging structure to alleviate the
limitations of the finite transformer latent space (i.e. which ef-
fects a latent-dimensioned superposition-enhanced array of global
variables). 13

Solving these two problems will enable the models to operate on data
in a new way: rather than the token-policies being permanently and fun-
damentally tied to the weights of a model, the policies (or programs)
exist as a function of the activations & tokens themselves. This is
modeled on human cognition: given a verbal description of an algorithm,
we can mentally simulate it (if sometimes imperfectly). Current LLMs are
limited in these regards; for example, though they know basic set operations
and can describe them to you, they typically struggle to apply operations,
which are fundamental to mathematics, to new sets [14].

3.3

The third hurdle is training the loop, or ‘boot-up’. This is the largest
and most novel challenge. Boot-up entails two elements of complex-
ity: if the memory substrate (the model) implements both continuous high-
dimensional vectoral and low-dimensional symbolic functions, then you need
to be able to flexibly learn both of those representations. Likewise, gen-
eral computation can consist of a mix of heuristics (in the form of high-
dimensional vector functions) and low-dimensional symbolic functions. This
again is mirrored in human cognition: we think with a mix of explicit rules
and transformations which are triggered by intuitions (e.g. when solving a
mathematical problem), or heuristic guessing triggered by symbolic compu-
tation (e.g. guessing the odds of a poker hand after counting & categorizing
visible cards).

In a normal transformer, the executable ‘programs’ are stored in the
weights; perforce of training on larger and larger datasets, these programs
become progressively more general, to the point that they do remarkable
things, especially when re-ingesting their own outputs. One shot learning is
a form of programming by example – but, again, OOD generalization and
level of abstraction is imperfect here: LLMs can reliably fill in examples
they have seen, but not directly ‘expand’.

In the proposed model, programs are learned and stored directly in the
the tokens & can be accessed and executed directly, and general computation

4

14 Sometimes you must select more
than one operator in a sequence; some
of these operators may (in true strange-
loop fashion) seek to change and trans-
form the path-finding process itself.

15 One alternative, not explored here,
is to have a continuum between low-D
and high-D function implementation /
approximation, which is interesting but
does seem to be the way people think
– it’s one or the other.
16 A second alternative is to have only
high-dimensional functions; this may
very well work, but as it’s the default
course, it is well covered by other enti-
ties and won’t be explored here.

consists of a mix of heuristic and symbolic computation. This entails a
number of architectural features / changes:

� (1) The model is trained to exactly implement the symbolic algorithms
stored in tokens (not approximate!)

� (2) There must be a mechanism for learning exact and approximate
policies for triggering (‘calling’) learned symbolic transformations.

– In a normal transformer, this is built into the sequence lay-
ers/heads, and is chained via backprop; here we chain via both
SGD and higher-level symbolic functions.

� (3) The model can translate from heuristic or approximate functions
to symbolic functions, and vice-versa

(1) is as motivated above, sec. 3.2; (2) requires critical innovations; (3)
is possible if 2 is satisfied.

3.4 Interlude – path-finding

Solving a problem {inducing a model from data, or developing heuristics &
algorithms for factorizing and solving CSPs} involves a process analogous to
path-finding through a graph of computation and data. At each node in the
path, the system must select an operator from those available14. Selection
requires a policy, search, enumeration, guessing – or a mix of all of these.
In systems like DreamCoder [15], policy is handled by sample-efficient Pro-
toNets to implement heuristics [16] (there are many other algorithms that
could serve this purpose, like boosted trees, kernel methods [17], SVM, etc).
Critical is sample efficiency: if you need k samples to learn an approximate
strategy at every of n steps along your path, and each step is distinct, then
you need ∼ kn samples to find your path. If individual steps are related,
where each previous step reduces the uncertainty of the following step by
(say) 50%, then this is ∼ kn2−n; if the domain of all paths is finite and can
be enumerated, then you can reasonably store them into a heuristic set of
policies in a sample-inefficient way.

This is what state-of-the-art models like o3 are doing. Yet we are scien-
tists! We are interested in pushing the frontier of understanding - we want
to be able to solve problems that humans have not solved before, prob-
lems that do not have an oracle or cannot reasonably discovered through
enumeration.

An astute eye again will note that the problem of forming a policy over
operator selection is effectively equivalent to the original problem of induc-
ing a model from limited data; this hurdle cannot be avoided through redi-
rection, and must be addressed through a combination of efficient learning
algorithms. Fortunately, there are many: in addition to those mentioned in
the context of DreamCoder: boosted trees, symbolic manipulation, even dif-
fusion models and other statistically-regularized approaches like GFlowNets
[18]. All of these can be decomposed into a composition of symbolic and
heuristic functions, hence can be implemented in the proposed system15,16.

3.5 Synthesis

The interlude motivates a rough system design:

1. Create a “System 2” which can run symbolic programs to transform
tokens, input data, and self-generated traces.

� The system needs to be vectoral and not an interpreter, like
Python or Ocaml, because we need to propagate maintain high-
dimensional representations for fitting approximate heuristic func-
tions.

2. Keep a long context of actions and results, just the same as modern
transformers.

5

17 This is equivalent to unrolling the
transformer so that gradients may run
backward through time, through the
tokens – the discretization step acts
as both a clean-up, like DreamerV3
[20]. Other formulations like the im-
plicit function theorem [21] may prove
useful.

18 The System 1 model will start as dif-
fusion transformer, as this is something
that we have direct experience with
that shows decent compositionality and
sample efficiency. While the composi-
tional hypothesis above indicates that
System 1 ought to be a combination
of low-D and high-D functions, we hu-
mans have very limited conscious ac-
cess to the default intuition-building al-
gorithm. Mirroring this, for now the
System 1 model can remain fixed, with
higher-level modulation through atten-
tion.
19 Forming a potentially long but fi-
nite computational path; the axis that
yields Turing-completeness still needs
to be context length

20 An alternative would be to give the
model strange-loop access to PyTorch.
This seems more efficient, yet more dif-
ficult.
21 Conjecture!

� This will require the same set of tricks models use to get long
context windows, plus those required to make the new attention
performant.

3. Include recurrence in addition to context [19] like the universal trans-
former [10]17

4. Provide a “System 1” which processes and guesses / intuits in parallel
to the symbolic sub-system. Like in people, this is trained “in the
background”, based on replay, with SGD.

� RL systems like EfficientZero [22, 23] indicate that, with sufficient
specialization, we can attain near-human sample efficiency here.

5. Add in recursion and frame-switch tokens or meta-cognitive actions
for manipulating the memory context.

� This does not require any architectural changes – only appro-
priate training, in the same way that LLMs inherit the strange-
loopiness of human cognition from natural language.

� Refer to Figures 1 & 2 for illustrations of variable contexts.

The system thus is a recurrent transformer, trained on symbolic manip-
ulation tasks (e.g. on LEAN or Coq), paired with a background System 1
“intuition generator and compressor” that continually tries to predict inter-
nal state18.

3.6 Guessing

When there is an absence of knowledge - when there is no policy - the solver
has to guess, whether that’s from random noise (e.g. introduced through
random sampling at the last softmax step (as in LLMs), other selection
steps, or via the injection of de novo noise into the representation. Those
guesses are informed by System 1 and 219, so that even in the absence of a
concrete rule, they can be informed by context and past experience. Guesses
then need to be rolled out through the environment and reinforcement,
following (for the moment) the current successful playbook of LLMs. As
tokens create the computational graph20, and can implement algorithms
like counterfactual reasoning, this reinforcement is not limited to the sample
efficiency of SGD.21

4 Closing and ‘strange-ing’ the loop

In our minds, we have both offline, continuous background compression
(which forms and updates System 1), but we also have explicit functions
that ‘call’ memory formation: surprise, delight, disgust, etc. Only a few of
these need be baked into the system; the rest can be learned by making the
operation of SGD explicitly callable via a module within the token stream
itself. (This is a version of what ‘attention’ means in common parlance:
we decide what to attend to and hence understand/predict/remember). As
mentioned above, this dissolves some of the distinction between model and
optimizer.

A second essential part of strange-loopiness is introspection (“why did
this guess work?”; “I can intuit this result – why?”). Humans cannot in-
trospect the state of their synapses (it wouldn’t work out from a numbers
perspective!); instead, we derive/compress via input-output example, just
the same as we do from interaction with the external world. The system
thus must query its own knowledge to transform it, just the same as it in-
duces models from external data. In the poker example given above, this is
equivalent to repeatedly asking, with different inputs, “why did I intuit this
play for that player?”, which can be passed to a counterfactual reasoning
process (or the like). This is a process of taking a set of heuristics and
deriving a symbolic rule to supplant or summarize it, as indicated above
(3); it’s a path from implicitly learned knowledge to explicit knowledge.

6

22 Another conjecture! Yet this is con-
sistent with the power-law distribution
of natural data [24]

23 Weights needed for executing sym-
bolic programs should not be modified
when learning heuristics. Normal ML
systems get around this by treating all
data as ergodic and IID, and learning
over many epochs; fortunately there is
plenty of literature describing systems
for preventing catastrophic forgetting,
e.g. [26].

5 Conclusion & summary

An interesting consequence of generalized knowledge being in purely in the
tokens is that it means that the base ML model can be smaller and more
general – a kernel that’s literally programmed through text. This of course
necessitates an explicit index over the knowledge, via the combination of
high-D / low -D Systems 1 & 2. Such an index can be iteratively refined
through introspection, per above, which facilitates O(n log(n)) access to
knowledge, combating the expensive novel attention computation 22 and
providing memory structuring, essential for generalization [25].

There are obviously a lot of holes in this plan for “a pump that pumps
information into itself”. Not exclusively:

� Is it possible to build & train a transformer that truly generalizes
OOD when executing (nearly) arbitrary algorithms?

� How do you mechanistically “fill in the gaps” when deciding on ac-
tions, and open-ended computation is split between low-D and high-D
representations?

� How do you prevent catastrophic forgetting when propagating gradi-
ents through hybrid computational graphs?23

� Can you resolve many of the problems this approach shares with re-
current neural nets, like exploding / vanishing gradients?

� If the strange loop transformer permits the creation of new computa-
tional graphs, how do you augment memory representation & accord-
ingly compositional data structures?

Most of these questions can only be answered by running experiments
and trying it out – a loop to make a strange loop. So, onto that!

Timothy Hanson
May 23 2025
Updated July 23 2025 ver. d2755145a1042d2816b158ae5c6b89223f91028d

7

References

[1] A. Ebtekar and M. Hutter, “Foundations of algorithmic thermody-
namics,” Physical Review E, vol. 111, no. 1, p. 014118, Jan. 2025.
https://link.aps.org/doi/10.1103/PhysRevE.111.014118

[2] I. Mirzadeh, K. Alizadeh, H. Shahrokhi, O. Tuzel, S. Bengio, and
M. Farajtabar, “GSM-Symbolic: Understanding the Limitations of
Mathematical Reasoning in Large Language Models,” Oct. 2024.
http://arxiv.org/abs/2410.05229

[3] B. Barak, B. L. Edelman, S. Goel, S. Kakade, E. Malach, and C. Zhang,
“Hidden Progress in Deep Learning: SGD Learns Parities Near the
Computational Limit,” Jan. 2023. http://arxiv.org/abs/2207.08799

[4] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang,
“Transformers Learn Shortcuts to Automata,” May 2023. http:
//arxiv.org/abs/2210.10749

[5] Y. Nikankin, A. Reusch, A. Mueller, and Y. Belinkov, “Arithmetic
Without Algorithms: Language Models Solve Math With a Bag of
Heuristics,” Oct. 2024. http://arxiv.org/abs/2410.21272

[6] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt,
“Progress measures for grokking via mechanistic interpretability,” Jan.
2023. http://arxiv.org/abs/2301.05217

[7] J. Pitrat, “A Step toward an Artificial Artificial Intelligence Scientist,”
p. 55, 1999.

[8] J. Thomm, G. Camposampiero, A. Terzic, M. Hersche, B. Schölkopf,
and A. Rahimi, “Limits of Transformer Language Models on Learning
to Compose Algorithms,” Nov. 2024. http://arxiv.org/abs/2402.05785

[9] S. Kotha, J. M. Springer, and A. Raghunathan, “Understanding
Catastrophic Forgetting in Language Models via Implicit Inference,”
Apr. 2024. http://arxiv.org/abs/2309.10105

[10] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser,
“Universal Transformers,” arXiv:1807.03819 [cs, stat], Mar. 2019.
http://arxiv.org/abs/1807.03819

[11] B. Neyshabur, R. Salakhutdinov, and N. Srebro, “Path-SGD:
Path-Normalized Optimization in Deep Neural Networks,” Jun. 2015.
http://arxiv.org/abs/1506.02617

[12] B. L. Edelman, S. Goel, S. Kakade, and C. Zhang, “Inductive Biases
and Variable Creation in Self-Attention Mechanisms,” Jun. 2022.
http://arxiv.org/abs/2110.10090

[13] T. Henighan, “Superposition, Memorization, and Dou-
ble Descent,” 2023. https://transformer-circuits.pub/2023/
toy-double-descent/index.html

[14] B. Akhbari, M. Gawali, and N. A. Dronen, “SetLexSem Challenge:
Using Set Operations to Evaluate the Lexical and Semantic Robustness
of Language Models,” Nov. 2024. http://arxiv.org/abs/2411.07336

[15] K. Ellis, C. Wong, M. Nye, M. Sable-Meyer, L. Cary, L. Morales,
L. Hewitt, A. Solar-Lezama, and J. B. Tenenbaum, “DreamCoder:
Growing generalizable, interpretable knowledge with wake-sleep
Bayesian program learning,” arXiv:2006.08381 [cs], Jun. 2020.
http://arxiv.org/abs/2006.08381

[16] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical Networks for
Few-shot Learning,” Jun. 2017. http://arxiv.org/abs/1703.05175

8

https://link.aps.org/doi/10.1103/PhysRevE.111.014118
http://arxiv.org/abs/2410.05229
http://arxiv.org/abs/2207.08799
http://arxiv.org/abs/2210.10749
http://arxiv.org/abs/2210.10749
http://arxiv.org/abs/2410.21272
http://arxiv.org/abs/2301.05217
http://arxiv.org/abs/2402.05785
http://arxiv.org/abs/2309.10105
http://arxiv.org/abs/1807.03819
http://arxiv.org/abs/1506.02617
http://arxiv.org/abs/2110.10090
https://transformer-circuits.pub/2023/toy-double-descent/index.html
https://transformer-circuits.pub/2023/toy-double-descent/index.html
http://arxiv.org/abs/2411.07336
http://arxiv.org/abs/2006.08381
http://arxiv.org/abs/1703.05175

[17] R. B. Palm, U. Paquet, and O. Winther, “Recurrent Relational
Networks,” Nov. 2018. http://arxiv.org/abs/1711.08028

[18] Y. Bengio, S. Lahlou, T. Deleu, E. J. Hu, M. Tiwari, and E. Bengio,
“GFlowNet Foundations,” Jul. 2023. http://arxiv.org/abs/2111.09266

[19] Z. Yang, A. Ishay, and J. Lee, “Learning to Solve Constraint
Satisfaction Problems with Recurrent Transformer,” Jul. 2023.
http://arxiv.org/abs/2307.04895

[20] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering Diverse
Domains through World Models,” Jan. 2023. http://arxiv.org/abs/
2301.04104

[21] S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium Models,” 2019.

[22] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering
Atari Games with Limited Data,” Dec. 2021. http://arxiv.org/abs/
2111.00210

[23] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao, “EfficientZero V2:
Mastering Discrete and Continuous Control with Limited Data,” Sep.
2024. http://arxiv.org/abs/2403.00564

[24] M. Hutter, “Learning Curve Theory,” Feb. 2021. http://arxiv.org/
abs/2102.04074

[25] G. Delétang, A. Ruoss, J. Grau-Moya, T. Genewein, L. K. Wenliang,
E. Catt, C. Cundy, M. Hutter, S. Legg, J. Veness, and P. A.
Ortega, “Neural Networks and the Chomsky Hierarchy,” Feb. 2023.
http://arxiv.org/abs/2207.02098

[26] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the
National Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, Mar.
2017. https://pnas.org/doi/full/10.1073/pnas.1611835114

9

http://arxiv.org/abs/1711.08028
http://arxiv.org/abs/2111.09266
http://arxiv.org/abs/2307.04895
http://arxiv.org/abs/2301.04104
http://arxiv.org/abs/2301.04104
http://arxiv.org/abs/2111.00210
http://arxiv.org/abs/2111.00210
http://arxiv.org/abs/2403.00564
http://arxiv.org/abs/2102.04074
http://arxiv.org/abs/2102.04074
http://arxiv.org/abs/2207.02098
https://pnas.org/doi/full/10.1073/pnas.1611835114

	Introduction
	Why
	Data efficiency
	Aren't we there already?

	How
	
	
	
	Interlude – path-finding
	Synthesis
	Guessing

	Closing and `strange-ing' the loop
	Conclusion & summary

