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Abstract

This is an experimental examination of the sample efficiency of
MLPs and transformers. We show that while MLPs can be ‘per-
fectly’ sample efficient in terms of interpolation, transformers suffer
from over-functionalization with excess heads, layers and distractor
latent dimensions. Experiments are with a simple “‘setfind” toy prob-
lem, wherein the model has to retrieve information from one token
of N. This task enables measurement of sample efficiency relative to
N, showing that transformers inefficiently treat search as unordered,
despite being provided with perfect position encoding. We surmise
that some of the effects observed can be traced to the additional state
embodied in the attention matrices, which confers a degree of compo-
sitionality to the model. Additional state also means that the space of
initial and accessible models grows, making the probability of finding
the ‘correct’ or simplest one, conditional the data, less likely.

1 Introduction

After working on the classic CSP of Sudoku for several months!, we’ve fig-
ured out how to learn a ‘perfect’ model of the world — a model that can
predict the legality and outcome of single actions entirely from observation.
However, training is not per se efficient — for reliable model convergence,
you need about 64k random actions, which takes several minutes to gen-
erate, and > lhr of training on a single RTX 4090. When applying this
world model to solve puzzles (entirely in imagination = planning), it still
takes several seconds, even when accounting for efficiencies due to batched
execution.

All this is quite a bit slower than a straightforward python implementa-
tion of backtracking search. Yet:

1. Backtracking search never learns from experience - the average time
to solve a puzzle never decreases, which is both not desirable, and not
what humans do.

2. On problems with action & state spaces larger than Sudoku, back-
tracking search won’t scale.

Human’s sample efficiency / ability to learn quickly + episodic and long-
term memory enables us to detect patterns in both the board state and cog-
nitive processing (chains of logical deduction) that enable dramatic search
amortization and reduction of the space searched. Learning quickly involves
inducing predictive models that both guide action selection (policies that
decrease search breadth), and factorize the search space (decrease search
depth — deductively avoid bad intermediate states).

2 Is deep learning sample efficient?

2.1 Model structure

This raises the vital question: is deep learning sufficiently sample efficient
for bootstrapped active learning? That depends on the data, the optimizer,
and the model.
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Keeping the data and the optimizer fixed, let’s focus on model type.
Deep learning provides (sometimes-implicit) assumptions about the data &
how to process it into model structure. Roughly,

e MLPs assume vectoral data can be segmented by many hyperplanes,
serially (layers) and in parallel (units).

— This implies that the series of vectoral spaces are continuous
along the depth dimension: points that are close have a similar
mapping.

— Generalization is therefore dependent on interpolation or regres-
sion working well for the data?.

e Convnets add to this that data is translation and scale invariant.

— This forces all translations to map to similar activations: ‘close’
is preemptively collapsed.

e Transformers swap this invariance out with the assumption that all
tokens are independent until proven otherwise. 3

— This means that all computations are identical across tokens,
and so variance and equivariance must be learned; rather than
collapsing ‘close’, every token is by default treated similarly.

— Le. a transformer can learn {translation, rotation, scale} equiv-
ariance / invariance / symmetries.

— This is contingent on supervised data ‘pulling’ out sub-spaces of
the latent token space & finding small T'C? circuits for predicting
these expansions|?].

— Due to the structure of Softmax attention, the different TC? cir-
cuits are not uniformly accessible by SGD*, and so transformers
like to learn ‘approximate automata’[1] based on the vagaries of
the data and initial conditions.

This abbreviated sequence of models goes from having the minimal as-
sumption of smoothness, to building in the ability to represent symmetries.
We will look at MLPs first before moving to transformers.

2.2 MLPs

Rather than asking if MLPs are sample efficient, it’s productive to instead
ask if nominally higher capacity models are more likely to overfit the data.
If they do overfit, this then the high-dimensional mapping is not smooth
and does not well interpolate & generalize the data. If they do not overfit,
independent of the number of parameters, even while the train loss goes
to = 0, then all the datapoints are recorded and interpolated within the
limits of the model assumptions — the model is sample efficient. Sample
inefficiency meanwhile may come from regularization: data provided to the
model is not exactly learned, which may be caused by with dropout, Ly /
Lo weight or activation regularization, or other smoothness constraints.

All DL uses continuous parameterization, so that in addition to the
statistics in the optimizer, there is fized memory during the optimization
process. Due to this fixed memory®, and because a priori you do not know
the complexity or expressivity of the model to be fit, there is an emphasis on
overparameterization, sometimes with more parameters than the training
data ©.

This overparameterization makes many statisticians uncomfortable, since
it also increases the model capacity, and so would also increase the risk of
overfitting. This turns out not to be true, which we can illustrate by com-
paring two networks:

1. A network that’s initialized with small random weights, aka Xavier
initialization.

2 Not true for the phenomena of
‘grokking’, as discussed below.

3 They also can have explicit limits on
what tokens can predict ( = depend
upon) others, e.g. causal masking.

4 A corollary of them being compo-
sitional! This supposition is testable:
if true, then the entropy of the Soft-
max on different layers almost never de-
creases during training

5 Many other optimizers (e.g. back-
tracking search) have variable and ex-
panding memory that increases with
task complexity (e.g. tree depth)

6 Overparameterization makes more
complex models accessible and also
helps trajectories escape of local min-
ima
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Figure 1: Test set accuracy for training a 3-layer network with 100 samples
from the MNIST dataset. Top row shows performance with a 512-unit
hidden layer, and bottom row with a 1512-unit hidden layer. Weight sparsity
negatively impacts test accuracy, but there are examples of training runs

with a very high level of sparsity achieves similar performance to the non-
sparse model.

2. A network that’s initialized with all zeros, and individual neurons
‘turn on’ to capture parts of the error stream. This allows the network
to explicitly allocate capacity gradually.

The 3-layer MLP networks are trained on that old standby, MNIST, only
we experiment with 100 training points and 69900 test points, and assess
models on their classification accuracy, where a random model gets ~ 10%
correct.

As shown in Figure 1, SGD can on average find a better-generalizing
solution when the network is initialized with small random weights; aggres-
sive sparsification has no positive effect, suggesting that the raw number of
non-zero parameters has little effect on overfitting”.

This is rather surprising from a Bayesian perspective: adding more pa-
rameters to the model should make the total number of models grow ex-
ponentially, hence making any given model a posteriori less likely — and
more likely to overfit the data and not generalize. This is not what we and
countless others have seen. A working hypothesis is that instead of starting
with exponential number of models, and using optimization to select from
them, requiring concomitant quantities of data®, you instead start with
all models being essentially equivalent and statistically indistin-
guishable.

SGD & friends add structure to the models by expanding the probability
volume of model behavior. Specifically, SGD allocates state (neuron activa-
tions) dynamically, at the same it differentiates the weight matrix. See this
post for more. The initial assumption that ‘all hyperplanes are nearly flat’
means that all input and hidden dimensions are assumed equivalent until
proven otherwise, which means that all models initially behave =~ equiva-
lently. The sparsity results indicate that it does not matter much if the
directions of those hyperplanes is axis-aligned (at least, for MNIST). ? A
further surprise is that, within a broad regime, both Adam and AdamW
never seem to overfit (i.e. train loss goes to zero yet test loss blows up.)!°

In terms of interpreting raw sensory data, the baseline performance of
MLPs is strong: > 70% performance on MNIST-100 is quite good! De-
spite the allocation arguments above, I think there is a far simpler reason
that properly designed MLPs don’t overfit: they are only continuous
mappings, with no expansive internal state.

7 Of course, this is not a perfect com-
parison — the selection of which param-
eters to make non-zero is still drawn
from high dimensions — but the descrip-
tion length of the sparse model should
be much lower. ‘Should’ because the
overparameterized non-sparse model is
likely much less sensitive to parameter
noise, and so quantization to reduce the
description length should affect perfor-
mance less, as seen in LLMs

8 Similar to the lottery ticket hypothe-
sis

9 Compare with Anthropic’s superpo-
sition results

10 But ... why would they push on
probability volume where there is no
data support?
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Interlude: interpolation is often an incorrect and insufficient assump-
tion for the data, most notably with the phenomena of grokking,
where a MLP transitions from memorizing / interpolating the data
to both interpolating the data and assuming that it has an or-
dering in the input and output space (i.e. adding probability
volume, then reducing it). A common task for measuring and
observing grokking is modular arithmetic, where the digits to be
added/multiplied/whatnot are supplied as one-hot vectors, rather
than scalars. The initial random vectors assigned to each one-hot
through the first and last layers do not obey any ordering consistent
with the integers, and so the network simply memorizes mappings.
Only after many epochs does information leakage + regularization-
mediated compression - e.g. through L, weight normalization - lead
to the one-hot representations adopting a series of Fourier (like)
bases which encodes the proper ordering, enabling interpolation to
compute the correct result for held-out validation data. Interest-
ingly, the data requirements for this effect is O(mlog(m))[2] where
m is the set or group size of the modular arithmetic. This is the
same as the time complexity of classical sorting algorithms, hence
again MLPs are sample efficient, though highly compute inefficient
compared to classic sorting.

2.3 Transformers

No internal state is not true of transformers, which have state (the attention
matrices) that’s outside an affine transformation of the input data. Adding
this state makes the model more expressive and more capable of supporting
concise relational algorithms, but also makes it also more prone to overfit-
ting [3]. This happens gradually: as the models get larger, the means for
SGD to push on probability volume is no longer is well aligned with the
computations required to solve the task, and you do get overfitting.

Expressivity is a double-edged sword: if relational (e.g. adding con-
ditional 'get’ operations between tokens, as in a transformer) are
more accessible, then the model is more likely to represent the ac-
tual generative process. As transformers treat all tokens as equiv-
alent until proven otherwise (FFN layers are applied identically to
all tokens), they can potentially learn arbitrary invariances / equiv-
ariances / symmetries — again, enabling better representation of the
generative process.

By being more expressive, viz adding more initial state to the model
in the form of large attention matrices, the total number of possible
models also grows & the number of different initial models also grows,
and so the probability of SGD finding an equivalent to the original
generative process decreases. Early stopping, e.g. after 2-3 epochs,
can be seen as an imperfect heuristic or regularization to bias the
search to simpler models.

11

At very large scales, it would appear that transformers are sample ef-
ficient — LLMs famously can do ‘zero shot’ learning. Yet, as argued in a
previous blog post, this is merely reflecting their learning of (approximate)
programs from structure in the training data. Programs are by nature gener-
ative, so LLMs do generalize well, but it does not mean that the model itself
is sample efficient. Rather it has learned to copy the reasoning-structure of
the dataset; as the training datasets are huge and have redundant structure
for common motifs, there is minimal restraint on sample efficiency.

As mentioned above, transformers assume that all tokens are uniformly
(in)dependent, but the models are biased toward discrete and one or few-hot
relations through the Softmax on the attention matrix. This is reflective
of the sparse causal structure of the world, and especially our linguistic
world, but it does seem to require significant data to whittle down which-

1 This suggests a straightforward

means of improving the generalization
quality of transformers: (1) Adjust the
weights so that all layers and attention
matrices are scaled to be approximately
similar, conditional input data. This
is a necessary compromise, as activa-
tions must be distinguishable via SGD,
but not so much to be distinguishable
by downstream layers. Tricky! (2) Use
multiple Softmax calculations so that,
on average, they are the same - but can
be differentiated by SGD.
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of-N tokens is predictive of the N+1 token. Learning the attention matrix
is effectively inferring a parse-graph over tokens, with priors and limitations
of what that graph may be. In comparison to MLPs, overfitting is a natural
behavior of a transformer that is not sufficiently constrained: it can drive
the attention matrix form spurious correlations in the data.

E.g. there is something like Y7  w;(7) different ways of arranging
attention form a context of n to one token, where w; is the softmax weighting
for the number of active & predictive predecessor tokens, and Z:;l w; = 1.
Parallel training constrains this'2, but still that’s a lot of different potential
models!

To demonstrate this, we have experimented with a toy test problem,
‘setfind’. The goal of setfind is to locate a statically-tagged (over the learning
task) member of a set, retrieve its information, and do a simple operation
on this information!®. Here a transformer is supplied with a list of tokens (a
set), one of which is a ‘cursor’ token, and the rest which are input tokens or
‘distractor’ tokens. The task is to predict the distance between the cursor
token and the zero token, as measured via a positional encoding. The order
of all tokens, inclusive the cursor token, are randomly permuted. The signed
distance is provided as a supervised learning signal.

This problem is equivalent to learning a single ’hard’ linkage to one-of-n
elements in a set — a basic operation of dependency-creation. As consistent
with a Bayesian perspective, sample efficiency scales with model size on
this problem; see Figure 2. As you increase the complexity of the model,
the data required to solve the task increases — somewhat gracefully, but
monotonically.

This gets back to the double-edged sword (box above): adding more
model capacity (through layers + heads — attention matrices, not param-
eters) increases the available state, hence model capacity, hence the prob-
ability that SGD finds a model not in the equivalence class as the actual
data-generating process. This could be addressed by making the search
discrete: training multiple models and comparing test losses, which is the
straightforward way of making larger capacity models inaccessible to SGD.
If larger-capacity models are accessible to SGD, then there is a chance that
it will erroneously find the wrong causal structure; this probability must
increase monotonically with increasing model capacity. The converse is
illustrative: if it does not increase with model capacity, then necessarily
higher capacity models are not accessible.

Sample efficiency also depends on n - the size of the set to be selected
from. If the set is ordered, then the optimal strategy is binary search, where
the correct element can be found in logs(n) steps. This is not the case with
a naive transformer, which has no knowledge of the ordering of the set
elements (even though they are given ordered positional encoding!) - on
average, a model requires 4n - 8n batches. As each batch is a full example
set (as described above), this means it needs > 4n? set elements or ‘tokens’
to solve a one-of-n selection task. See Figure 3.

This is a contrived example, but still illustrative that (without help)
transformers are not natively sample-efficient at figuring out which token
to attend to. There are likely workarounds leveraged by frontier LLMS:

e Selection problems with large N are broken down into a series of
smaller problems, which can be learned sequentially. Dividing the
task into two problems reduces the sample requirement linearly, by
a factor of 2. These ‘breadcrumbs of thought and factorization’ are
prevalent in the human-generated data, since we also have to solve
the same problems!

e The model learns semantic as well as grammatical, syntactic or other
‘type’ information, since it has to predict both; just like a type sys-
tem benefits programming, so to can it constrain token-search in a
transformer.

e The model does learn an ordering over elements, which makes causality-
search look much more like a logs(IN) process'®. I think this is con-

21D training may disrupt this (a cur-
riculum would be better)

13 This operation is essential to in-
crease the number of combinations &
keep the model from simply memoriz-
ing the dataset. See the Appendix for
an experiment that omit this operation

14 Which suggests a follow-up experi-
ment: grokking x setfind



Run 3: Validation vs Training Data Size for Different Model Configurations
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Figure 2: Validation loss loss for training different model sizes (layers and
numbers of heads) for different data sizes on the ‘setfind’ toy problem. Dots
indicate individual validation losses, lines are the median loss, excluding
models that failed to converge. The set size is fixed at 16 for all runs here.
Of note, the author’s manually encoded positive-control solution needed 2
heads on 1 layer to solve this problem, yet gradient descent can do it in half
the size!
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Figure 3: Validation loss for training one model size (one layer and two
heads) for different set sizes and data sizes on the ‘setfind’ toy problem.
Large dots indicate validation losses for individual runs, lines are the median
loss. Small dots are the training losses for individual runs. Search requires
training data to be > 4x the set size for the model to converge: to locate
one element in 8, you need 128 samples; 16 - 32: 256; 64 - 128: 512, and
256: 1024.



Validaton vs set size vs sample size
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Figure 4: Validation loss for training one model size (one layer and two
heads) for different distractor dimensions and data sizes on the ‘setfind’
toy problem. Large dots indicate validation losses for individual runs, lines
are the median loss. Small dots are the training losses for individual runs.
Increasing distractor dimensions = linearly increases the data requirements,
with twice the distractor dimensions requiring twice the data for the model
to converge. (I don’t know what happened with the 96 run - eh, deep
learning..)

sistent with, among other things, the effectiveness of RLHF / RLVR,
but would require the emergent coordination of many heads within the
transformer. Anecdotally, dot-product attention is not fundamentally
ordered.

In the ‘setfind’ experiments above an additional wrinkle is that adding
distractor dimensions to the latent vector decreases sample efficiency and
increases the probability of non-convergence. Distractors in this case are
axes of variation that do not correlate with the task; such a situation could
be encountered in the first phases of training, or when there are many
different meanings to words & tokens ...

A core component of the transformer architecture is the MLP layers,
which operate on the data within a token, dependent only on the source
and destination token — a transformer is something like a message-passing
network. Per Figure 2, it seems that these MLP layers gracefully degrade
from the curse of dimensionality, as in the MNIST-100 experiments — but
I do not think there are any shortcuts to inferring the dependency map by
setting the Q and K matrices. Indeed, adding distractor dimensions to the

latent dims decreases performance and increases the data requirement!®

3 Concluding thoughts

There are many more model architectures and types than just MLPs and
Transformers, of course. State-space models, convnets, U-nets, RNNs like
LSTM or GLUs, VAEs, VQ-VAEs, diffusion models, 1%, energy-based mod-
els, G-flow nets, etc. all work to learn and model particular types of data.
Yet transformers and seem to posses a degree of universality'”, even if they
are sample-inefficient, as shown here. What is being computed and learned
in their attention matrices? How do these inferred dependencies between
tokens and additional state bear on modelling data? We will delve into
these issues, and how transformers and other models can be be made more
sample efficient, in a future article.

This post investigates the sample efficiency of MLPs and transformers
and finds that the former tends to efficient (given enough compute), while

15 Distractors could mean making a
transformer do many things at once —
which, perhaps, is not what LLMs are
doing since they are trying to emulate
human thought, and we tend to think
in terms of fairly constrained Markov
blankets.

16 \which is more of a training-inference
paradigm than an architecture
7 E.g. you can remove the convolu-

tional layers from a ViT and improve
performance [4]



the latter suffers from having excess accessible internal state. A future blog
post in will look more broadly at model architecture-structure and optimizer
form-function from the lens of model induction, and investigate how they
relate to sample efficiency.

4 Appendix
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Figure 5: Distribution of parameters without sparsification.
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Figure 6: Distribution of parameters with sparsification.
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Figure 7: Validation loss loss for training different model sizes (layers and
numbers of heads) for different data sizes on the ‘setfind’ toy problem, with-
out the additional wrinkle of having to measure distance with the retrived
token. Dots indicate individual validation losses, lines are the median loss.
Compare with Figure 2: larger models require more data to train, but only
after the model capacity is dramatically increased beyond the minimum.
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